@article{TVP_2004_49_1_a10,
author = {S. G. Kobel'kov},
title = {The ruin problem for the stationary {Gaussian} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {171--178},
year = {2004},
volume = {49},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a10/}
}
S. G. Kobel'kov. The ruin problem for the stationary Gaussian process. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 171-178. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a10/
[1] Piterbarg V. I., Asimptoticheskie metody v teorii gaussovskikh sluchainykh protsessov i polei, Izd-vo MGU, M., 1988, 175 pp.
[2] Piterbarg V. I., “Metod Raisa dlya gaussovskikh sluchainykh polei”, Fundam. i prikl. matem., 2:1 (1996), 187–204 | MR | Zbl
[3] Hüsler J., Piterbarg V., “Extremes of a certain class of Gaussian processes”, Stochastic Process. Appl., 83:2 (1999), 257–271 | DOI | MR | Zbl
[4] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, 368 pp. | MR
[5] Debicki K., “Ruin probability for Gaussian integrated process”, Stochastic Process. Appl., 98:1 (2002), 151–174 | DOI | MR | Zbl
[6] Kulkarni V., Rolski T., “Fluid model driven by an Ornstein–Uhlenbeck process”, Probab. Engrg. Inform. Sci., 8 (1994), 403–417 | DOI
[7] Norros I., “A storage model with self-similar input”, Queueing Syst. Theory Appl., 16:3–4 (1994), 387–396 | DOI | MR | Zbl
[8] Narayan O., “Exact asymptotic queue length distribution for fractional Brownian traffic”, Advances in Performance Analysis, 1 (1998), 39–63 | MR