The ruin problem for the stationary Gaussian process
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 171-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The exact asymptotic of the ruin probability is found in the case when the profit rate has the form of the Gaussian stationary process.
Keywords: Gaussian process, Rice method, ruin probability.
@article{TVP_2004_49_1_a10,
     author = {S. G. Kobel'kov},
     title = {The ruin problem for the stationary {Gaussian} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {171--178},
     year = {2004},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a10/}
}
TY  - JOUR
AU  - S. G. Kobel'kov
TI  - The ruin problem for the stationary Gaussian process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 171
EP  - 178
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a10/
LA  - ru
ID  - TVP_2004_49_1_a10
ER  - 
%0 Journal Article
%A S. G. Kobel'kov
%T The ruin problem for the stationary Gaussian process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 171-178
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a10/
%G ru
%F TVP_2004_49_1_a10
S. G. Kobel'kov. The ruin problem for the stationary Gaussian process. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 171-178. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a10/

[1] Piterbarg V. I., Asimptoticheskie metody v teorii gaussovskikh sluchainykh protsessov i polei, Izd-vo MGU, M., 1988, 175 pp.

[2] Piterbarg V. I., “Metod Raisa dlya gaussovskikh sluchainykh polei”, Fundam. i prikl. matem., 2:1 (1996), 187–204 | MR | Zbl

[3] Hüsler J., Piterbarg V., “Extremes of a certain class of Gaussian processes”, Stochastic Process. Appl., 83:2 (1999), 257–271 | DOI | MR | Zbl

[4] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, 368 pp. | MR

[5] Debicki K., “Ruin probability for Gaussian integrated process”, Stochastic Process. Appl., 98:1 (2002), 151–174 | DOI | MR | Zbl

[6] Kulkarni V., Rolski T., “Fluid model driven by an Ornstein–Uhlenbeck process”, Probab. Engrg. Inform. Sci., 8 (1994), 403–417 | DOI

[7] Norros I., “A storage model with self-similar input”, Queueing Syst. Theory Appl., 16:3–4 (1994), 387–396 | DOI | MR | Zbl

[8] Narayan O., “Exact asymptotic queue length distribution for fractional Brownian traffic”, Advances in Performance Analysis, 1 (1998), 39–63 | MR