Second-order asymptotic behavior of subexponential
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 793-800 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a new way to obtain the rate of convergence for subexponential infinitely divisible distributions is proposed. Namely, for the subexponential infinitely divisible distribution function $H(x)$ with the Lévy measure $\mu ,$ the estimate of difference $$ 1-H(x)-\mu((x,\infty)) $$ as $x\to\infty $ has been obtained.
Keywords: infinitely divisible distributions, subexponential distributions, dominated variation, $RO$-varying functions.
Mots-clés : Lévy measure
@article{TVP_2003_48_4_a8,
     author = {A. Baltr\={u}nas and A. L. Yakymiv},
     title = {Second-order asymptotic behavior of subexponential},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {793--800},
     year = {2003},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a8/}
}
TY  - JOUR
AU  - A. Baltrūnas
AU  - A. L. Yakymiv
TI  - Second-order asymptotic behavior of subexponential
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 793
EP  - 800
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a8/
LA  - ru
ID  - TVP_2003_48_4_a8
ER  - 
%0 Journal Article
%A A. Baltrūnas
%A A. L. Yakymiv
%T Second-order asymptotic behavior of subexponential
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 793-800
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a8/
%G ru
%F TVP_2003_48_4_a8
A. Baltrūnas; A. L. Yakymiv. Second-order asymptotic behavior of subexponential. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 793-800. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a8/

[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[2] Chistyakov V. P., “Teorema o summakh nezavisimykh polozhitelnykh sluchainykh velichin i ee prilozheniya k vetvyaschimsya sluchainym protsessam”, Teoriya veroyatn. i ee primen., 9:4 (1964), 710–718 | Zbl

[3] Kruglov V. M., Antonov S. N., “Ob asimptoticheskom povedenii bezgranichno delimykh raspredelenii v banakhovom prostranstve”, Teoriya veroyatn. i ee primen., 27:4 (1982), 625–642 | MR | Zbl

[4] Zolotarev V. M., “Ob asimptoticheskom povedenii odnogo klassa bezgranichno delimykh zakonov raspredeleniya”, Teoriya veroyatn. i ee primen., 6:3 (1961), 330–334 | MR

[5] Sgibnev M. S., “Asimptotika bezgranichno delimykh raspredelenii v $\mathbb R$”, Sib. matem. zhurn., 31:1 (1990), 135–140 | MR

[6] Embrechts P., Goldie C. M., Veraverbeke N., “Subexponentiality and infinite divisibility”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 49 (1979), 335–347 | DOI | MR | Zbl

[7] Sato K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[8] Yakymiv A. L., “Yavnye neravenstva dlya asimptotiki subeksponentsialnykh bezgranichno delimykh raspredelenii”, Matem. zametki, 67:2 (2000), 295–301 | MR | Zbl

[9] Baltrūnas A., Omey E., “The rate of convergence for subexponential distributions”, Liet. Mat. Rink., 38:1 (1998), 1–18 | MR | Zbl

[10] Omey E., Willekens E., “Second-order behaviour of distributions subordinate to a distribution with finite mean”, Comm. Statist. Stochastic Models, 3:3 (1987), 311–342 | DOI | MR | Zbl

[11] Willekens E., “The structure of the class of subexponential distributions”, Probab. Theory Related Fields, 77:4 (1988), 567–581 | DOI | MR | Zbl