Second-order asymptotic behavior of subexponential
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 793-800

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a new way to obtain the rate of convergence for subexponential infinitely divisible distributions is proposed. Namely, for the subexponential infinitely divisible distribution function $H(x)$ with the Lévy measure $\mu ,$ the estimate of difference $$ 1-H(x)-\mu((x,\infty)) $$ as $x\to\infty $ has been obtained.
Keywords: infinitely divisible distributions, Lévy measure, subexponential distributions, dominated variation, $RO$-varying functions.
@article{TVP_2003_48_4_a8,
     author = {A. Baltr\={u}nas and A. L. Yakymiv},
     title = {Second-order asymptotic behavior of subexponential},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {793--800},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a8/}
}
TY  - JOUR
AU  - A. Baltrūnas
AU  - A. L. Yakymiv
TI  - Second-order asymptotic behavior of subexponential
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 793
EP  - 800
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a8/
LA  - ru
ID  - TVP_2003_48_4_a8
ER  - 
%0 Journal Article
%A A. Baltrūnas
%A A. L. Yakymiv
%T Second-order asymptotic behavior of subexponential
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 793-800
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a8/
%G ru
%F TVP_2003_48_4_a8
A. Baltrūnas; A. L. Yakymiv. Second-order asymptotic behavior of subexponential. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 793-800. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a8/