Régularité ergodique de quelques classes de Donsker
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 766-784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a weak decoupling inequality in ergodic theory for maximal operators. We apply this inequality to the study of the property for a set of functions to be a Donsker class. The sets we examine are built from a sequence of $L^2$-operators and naturally appear in the study of the almost sure regularity properties of these. We obtain new individual necessary conditions (for a given $f\in L^2(\mu)$) and new global necessary conditions. The latter conditions are of uniform type and have a natural translation on the regularity properties of the canonical Gaussian process $Z$ defined on $L^2(\mu)$.
Keywords: ergodic maximal operator, almost sure convergence, Gaussian processes, decoupling inequality, entropy numbers.
@article{TVP_2003_48_4_a6,
     author = {M. Weber},
     title = {R\'egularit\'e ergodique de quelques classes de {Donsker}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {766--784},
     year = {2003},
     volume = {48},
     number = {4},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/}
}
TY  - JOUR
AU  - M. Weber
TI  - Régularité ergodique de quelques classes de Donsker
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 766
EP  - 784
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/
LA  - fr
ID  - TVP_2003_48_4_a6
ER  - 
%0 Journal Article
%A M. Weber
%T Régularité ergodique de quelques classes de Donsker
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 766-784
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/
%G fr
%F TVP_2003_48_4_a6
M. Weber. Régularité ergodique de quelques classes de Donsker. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 766-784. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/

[1] Bourgain J., “Almost sure convergence and bounded entropy”, Israel J. Math., 63:1 (1988), 79–97 | DOI | MR | Zbl

[2] Giné E., Zinn J., “Some limit theorems for empirical processes”, Ann. Probab., 12:4 (1984), 929–989 | DOI | MR | Zbl

[3] Lifshits M., Weber M., “Tightness of stochastic families arising from randomization procedure”, Asymptotic Methods in Probability and Statisics with Applications (St. Peterburg, 1998), Birkhäuser, Boston, 2001, 143–159 | MR | Zbl

[4] Lifshits M., Weber M., “Oscillations of Gaussian Stein's elements”, Progr. Probab., 43 (1998), 249–261 | MR | Zbl

[5] Pisier G., Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach, 1975–1976, v. I, II, Séminaire Maurey–Schwarz, 3, 4, Ecole Polytechnique, Palaiseau, 1976

[6] Talagrand M., “Applying a theorem of Fernique”, Ann. Inst. H. Poincaré Probab. Statist., 32:6 (1996), 779–799 | MR | Zbl

[7] Weber M., “The Stein randomization procedure”, Rend. Mat. Appl. (7), 16:4 (1994), 569–605 | MR

[8] Weber M., “Sur le caractère gaussien de la convergence presque partout”, Fund. Math., 167:1 (2001), 23–54 | DOI | MR | Zbl

[9] Weber M., Entropie métrique et convergence presque partout, Hermann, Paris, 1998, 151 pp. | MR | Zbl