R\'egularit\'e ergodique de quelques classes de Donsker
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 766-784

Voir la notice de l'article provenant de la source Math-Net.Ru

We use a weak decoupling inequality in ergodic theory for maximal operators. We apply this inequality to the study of the property for a set of functions to be a Donsker class. The sets we examine are built from a sequence of $L^2$-operators and naturally appear in the study of the almost sure regularity properties of these. We obtain new individual necessary conditions (for a given $f\in L^2(\mu)$) and new global necessary conditions. The latter conditions are of uniform type and have a natural translation on the regularity properties of the canonical Gaussian process $Z$ defined on $L^2(\mu)$.
Keywords: ergodic maximal operator, almost sure convergence, Gaussian processes, decoupling inequality, entropy numbers.
@article{TVP_2003_48_4_a6,
     author = {M. Weber},
     title = {R\'egularit\'e ergodique de quelques classes de {Donsker}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {766--784},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2003},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/}
}
TY  - JOUR
AU  - M. Weber
TI  - R\'egularit\'e ergodique de quelques classes de Donsker
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 766
EP  - 784
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/
LA  - fr
ID  - TVP_2003_48_4_a6
ER  - 
%0 Journal Article
%A M. Weber
%T R\'egularit\'e ergodique de quelques classes de Donsker
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 766-784
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/
%G fr
%F TVP_2003_48_4_a6
M. Weber. R\'egularit\'e ergodique de quelques classes de Donsker. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 766-784. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/