R\'egularit\'e ergodique de quelques classes de Donsker
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 766-784
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We use a weak decoupling inequality in ergodic theory for maximal operators. We apply this inequality to the study of the property for a set of functions to be a Donsker class. The sets we examine are built from a sequence of $L^2$-operators and naturally appear in the study of the almost sure regularity properties of these. We obtain new individual necessary conditions (for a given $f\in L^2(\mu)$) and new global necessary conditions. The latter conditions are of uniform type and have a natural translation on the regularity properties of the canonical Gaussian process $Z$ defined on $L^2(\mu)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
ergodic maximal operator, almost sure convergence, Gaussian processes, decoupling inequality, entropy numbers.
                    
                  
                
                
                @article{TVP_2003_48_4_a6,
     author = {M. Weber},
     title = {R\'egularit\'e ergodique de quelques classes de {Donsker}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {766--784},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2003},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/}
}
                      
                      
                    M. Weber. R\'egularit\'e ergodique de quelques classes de Donsker. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 766-784. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a6/
