Precise Laplace-type asymptotics for moderate deviations
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 720-744

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulas are deduced allowing one to find precise asymptotics of moderate deviations for the distributions of sums of independent identically distributed Banach-valued random elements. This result is proved by the Laplace method in Banach spaces. This method is an extension of the classical asymptotic Laplace method to the case of integrals with respect to probability measures in infinite-dimensional Banach spaces. By means of the theorem established in the present paper we find asymptotic representations for the probabilities of moderate deviations of statistics of the form $\omega_n^p$$p\ge 2$.
Keywords: sums of independent random elements, Laplace method in Banach spaces, action functional, Cramér transform, probabilities of moderate deviations of statistics of the form $\omega_n^p$.
@article{TVP_2003_48_4_a4,
     author = {V. R. Fatalov},
     title = {Precise {Laplace-type} asymptotics for moderate deviations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {720--744},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a4/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Precise Laplace-type asymptotics for moderate deviations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 720
EP  - 744
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a4/
LA  - ru
ID  - TVP_2003_48_4_a4
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Precise Laplace-type asymptotics for moderate deviations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 720-744
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a4/
%G ru
%F TVP_2003_48_4_a4
V. R. Fatalov. Precise Laplace-type asymptotics for moderate deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 720-744. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a4/