Precise Laplace-type asymptotics for moderate deviations
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 720-744 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Formulas are deduced allowing one to find precise asymptotics of moderate deviations for the distributions of sums of independent identically distributed Banach-valued random elements. This result is proved by the Laplace method in Banach spaces. This method is an extension of the classical asymptotic Laplace method to the case of integrals with respect to probability measures in infinite-dimensional Banach spaces. By means of the theorem established in the present paper we find asymptotic representations for the probabilities of moderate deviations of statistics of the form $\omega_n^p$, $p\ge 2$.
Keywords: sums of independent random elements, Laplace method in Banach spaces, action functional, probabilities of moderate deviations of statistics of the form $\omega_n^p$.
Mots-clés : Cramér transform
@article{TVP_2003_48_4_a4,
     author = {V. R. Fatalov},
     title = {Precise {Laplace-type} asymptotics for moderate deviations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {720--744},
     year = {2003},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a4/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Precise Laplace-type asymptotics for moderate deviations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 720
EP  - 744
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a4/
LA  - ru
ID  - TVP_2003_48_4_a4
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Precise Laplace-type asymptotics for moderate deviations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 720-744
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a4/
%G ru
%F TVP_2003_48_4_a4
V. R. Fatalov. Precise Laplace-type asymptotics for moderate deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 720-744. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a4/

[1] Borovkov A. A., Mogulskii A. A., “O veroyatnostyakh bolshikh uklonenii v topologicheskikh prostranstvakh. I, II”, Sib. matem. zhurn., 19:5 (1978), 988–1004 ; 21:5 (1980), 12–26 | MR | Zbl | MR | Zbl

[2] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979, 424 pp. | MR | Zbl

[3] Ellis R. S., Rosen J. S., “Asymptotic analysis of Gaussian integrals. I: Isolated minimum points”, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 ; “Asymptotic analysis of Gaussian integrals. II: Manifold of minimum points”, Comm. Math. Phys., 82 (1981), 153–181 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Azencott R., “Formule de Taylor stochastique et développement asymptotique d'intégrales de Feynman”, Lecture Notes in Math., 921, 1982, 237–285 | MR | Zbl

[5] Bolthausen E., “Laplace approximations for sums of independent random vectors. I, II: Degenerate maxima and manifolds of maxima”, Probab. Theory Relat. Fields, 72:2 (1986), 305–318 ; 76:2 (1987), 167–206 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Venttsel A. D., Predelnye teoremy o bolshikh ukloneniyakh dlya markovskikh sluchainykh protsessov, Nauka, M., 1986, 175 pp. | MR | Zbl

[7] Ben Arous G., “Méthodes de Laplace et de la phase stationnaire sur l'espace de Wiener”, Stochastics, 25:3 (1988), 125–153 | MR | Zbl

[8] Kusuoka S., Tamura Y., “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci., Univ. Tokyo, Sect. I A, Math., 38:3 (1991), 533–565 | MR | Zbl

[9] Borovkov A. A., Mogulskii A. A., Bolshie ukloneniya i proverka statisticheskikh gipotez, Trudy In-ta matematiki SO RAN, 19, 1992, 1–220 pp. | MR

[10] Fatalov V. R., “Tochnye asimptotiki bolshikh uklonenii dlya gaussovskikh mer v gilbertovom prostranstve”, Izv. AN Armenii, ser. matem., 27:5 (1992), 43–57 | MR

[11] de Acosta A., “Moderate deviations and associated Laplace approximations for sums of independent random vectors”, Trans. Amer. Math. Soc., 329:1 (1992), 357–375 | DOI | MR | Zbl

[12] Chiyonobu T., “On a precise Laplace-type asymptotic formula for sums of independent random vectors”, Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics, Pitman Res. Notes Math. Ser., 284, eds. K. D. Edworthy et al., Longman, Harlow, 1993, 122–135 | MR | Zbl

[13] Piterbarg V. I., Fatalov V. R., “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, Uspekhi matem. nauk, 50:6 (1995), 57–150 | MR | Zbl

[14] Fatalov V. R., “Bolshie ukloneniya gaussovskikh mer v prostranstvakh $l^p$ i $L^p$, $p\ge2$”, Teoriya veroyatn. i ee primen., 41:3 (1996), 682–689 | MR | Zbl

[15] Fatalov V. R., “Reshenie odnoi problemy E. Boltkhauzena iz teorii summirovaniya nezavisimykh sluchainykh banakhovoznachnykh elementov”, Tretya Vserossiiskaya shkola-kollokvium po stokhasticheskim metodam, Tezisy dokladov, eds. Yu. V. Prokhorov i dr., “TVP”, M., 1996, 158–160

[16] Einmahl U., Kuelbs J., “Dominating points and large deviations for random vectors”, Probab. Theory Relat. Fields, 105:4 (1996), 529–543 | DOI | MR | Zbl

[17] Fatalov V. R., “Bolshie ukloneniya $L^p$-normy vinerovskogo protsessa so snosom”, Matem. zametki, 65:3 (1999), 429–436 | MR | Zbl

[18] Fatalov V. R., “The Laplace method for computing exact asymptotics of distributions of integral statistics”, Math. Methods Statist., 8:4 (1999), 510–535 | MR | Zbl

[19] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR

[20] Osipov L. V., “O veroyatnostyakh bolshikh uklonenii dlya summ nezavisimykh sluchainykh vektorov”, Teoriya veroyatn. i ee primen., 23:3 (1978), 510–526 | MR | Zbl

[21] Yurinskii V. V., “Ob asimptotike bolshikh uklonenii v gilbertovom prostranstve. I, II, III”, Teoriya veroyatn. i ee primen., 36:1 (1991), 78–92 ; 36:3, 535–541 ; 37:2 (1992), 268–275 | MR | MR | MR

[22] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985, 368 pp. | MR | Zbl

[23] Inglot T., Kallenberg W. C. M., Ledwina T., “Strong moderate deviation theorems”, Ann. Probab., 20:2 (1992), 987–1003 | DOI | MR | Zbl

[24] Bentkus V., Rackauskas A., “On probabilities of large deviations in Banach spaces”, Probab. Theory Relat. Fields, 86:2 (1990), 131–154 | DOI | MR | Zbl

[25] Kuelbs J., Li W. V., “Some large deviation results for Gaussian measures”, Progr. Probab., 35 (1994), 251–270 | MR | Zbl

[26] Yurinsky V. V., Sums and Gaussian vectors, Lecture Notes in Math., 1617, Springer-Verlag, Berlin, 1995, 305 pp. | MR | Zbl

[27] Yurinsky V. V., “Some asymptotic formulae for Gaussian distributions”, J. Multivariate Anal., 56:2 (1996), 303–332 | DOI | MR | Zbl

[28] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979, 432 pp. | MR

[29] Bonic R., Frampton J., “Smooth functions on Banach manifolds”, J. Math. Mech., 15:5 (1966), 877–898 | MR | Zbl

[30] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya, funktsii Lezhandra, Nauka, M., 1973, 294 pp.

[31] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981, 798 pp. | MR | Zbl

[32] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp. | MR

[33] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1965, 703 pp. | MR

[34] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1977, 228 pp.

[35] Simon B., Functional Integration and Quantum Physics, Academic Press, New York, 1979, 296 pp. | MR

[36] Pich A., Operatornye idealy, Mir, M., 1982 | MR

[37] Fatalov V. R., “Laplace approximations for probabilities of moderate deviations for $\omega_n^p$ statistics, $p\ge2$”, XX International Seminar on Stability Problems for Stochastic Models: Abstracts, Lublin, 1999, 50–51

[38] Fatalov V. R., “Asimptotiki bolshikh uklonenii vinerovskikh polei v $L^p$-norme, nelineinye uravneniya Khammershteina i giperbolicheskie kraevye zadachi vysokogo poryadka”, Teoriya veroyatn. i ee primen., 47:4 (2002), 710–726 | MR