On asymptotically efficient statistical inference for moderate
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 676-700
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the lower bounds of efficiency for the moderate deviation probabilities
of tests and estimators. These bounds cover both the logarithmic
and strong asymptotics.
For the problems of hypothesis testing we propose a natural representation for
the lower bounds of type I
and type II error probabilities in terms of inverse function of
the standard normal distribution. The lower bounds for the
moderate deviation probabilities of estimators are deduced easily from
the corresponding bounds in hypothesis testing.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
large deviations, moderate deviations, efficiency, Bahadur efficiency, Chernoff efficiency.
                    
                  
                
                
                @article{TVP_2003_48_4_a2,
     author = {M. S. Ermakov},
     title = {On asymptotically efficient statistical inference for moderate},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {676--700},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a2/}
}
                      
                      
                    M. S. Ermakov. On asymptotically efficient statistical inference for moderate. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 676-700. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a2/
