Random mappings of finite sets with a known number of
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 818-828 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the class of all one-to-one mappings of an $n$-element set into itself, each of which has exactly $N$ connected components. Letting $n,N\to\infty$, we find that the asymptotic behavior of the mean and variance of the random variable is equal to the number of components of a given size in a mapping that is selected at random and is equiprobable among the elements of the mentioned class, and we prove the Poisson and local normal limit theorems for this random variable. Asymptotic estimates are found for the number of mappings with $N$ components, among which there are exactly $k$ components of a fixed size.
Keywords: random mapping, local limit theorem, asymptotic estimators, components.
@article{TVP_2003_48_4_a11,
     author = {A. N. Timashev},
     title = {Random mappings of finite sets with a known number of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {818--828},
     year = {2003},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a11/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Random mappings of finite sets with a known number of
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 818
EP  - 828
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a11/
LA  - ru
ID  - TVP_2003_48_4_a11
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Random mappings of finite sets with a known number of
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 818-828
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a11/
%G ru
%F TVP_2003_48_4_a11
A. N. Timashev. Random mappings of finite sets with a known number of. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 818-828. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a11/

[1] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp. | MR

[2] Kolchin V. F., “Zadacha o razmeschenii chastits po yacheikam i sluchainye otobrazheniya”, Teoriya veroyatn. i ee primen., 21:1 (1976), 48–62 | Zbl

[3] Bagaev G. N., “Predelnye raspredeleniya metricheskikh kharakteristik sluchainogo nerazlozhimogo otobrazheniya”, Kombinatornyi i asimptoticheskii analiz, v. 2, Krasnoyarsk. gos. un-t, Krasnoyarsk, 1977, 55–61 | MR

[4] Bagaev G. N., “Raspredelenie chisla vershin v komponente nerazlozhimogo otobrazheniya”, Dokl. BSSR, 21:12 (1977), 1061–1063 | MR | Zbl

[5] Pavlov Yu. L., “Predelnye raspredeleniya nekotorykh kharakteristik sluchainykh otobrazhenii s odnim tsiklom”, Matematicheskie voprosy modelirovaniya slozhnykh ob'ektov, Karelskii filial AN SSSR, Petrozavodsk, 1979, 48–55

[6] Pavlov Yu. L., “Predelnye raspredeleniya odnoi kharakteristiki sluchainogo otobrazheniya”, Teoriya veroyatn. i ee primen., 26:4 (1981), 841–847 | MR | Zbl

[7] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978, 288 pp. | MR | Zbl

[8] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977, 320 pp.

[9] Stepanov V. E., “Sluchainye otobrazheniya s odnim prityagivayuschim tsentrom”, Teoriya veroyatn. i ee primen., 16:1 (1971), 148–156 | MR