On a stochastic optimality of the feedback control in the
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 661-675
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that the optimal feedback control $\widehat u$  in the
standard nonhomogeneous LQG-problem with infinite horizon has
the following property. There is a constant $b_*$ such that,
whatever $b> b_*$ is, the deficiency process of optimal control
with respect to any possible control $u$, i.e., the difference
$J_T(\widehat u\hspace*{0.2pt})- J_T(u)$ between the optimal cost process
$J_T(\widehat u\hspace*{0.2pt})$ and the cost process corresponding to control
$u$, is majorated at infinity  by a deterministic function $b\log
T$. In other words, $b\log T$ is an upper function for any
deficiency process. This result, combined with an example of an
LQG-regulator where,
 for certain $b>0$, the function $b\log T$ is
not an upper function for certain deficiency processes, gives an
answer to the long-standing open problem about the best possible
rate function for sensitive probabilistic criteria. Our setting
covers the optimal tracking problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
linear-quadratic regulator, optimality almost surely, observability, controllability, martingale law of large numbers, upper functions, Ornstein–Uhlenbeck process.
Mots-clés : Riccati equation
                    
                  
                
                
                Mots-clés : Riccati equation
@article{TVP_2003_48_4_a1,
     author = {T. A. Belkina and Yu. M. Kabanov and E. L. Presman},
     title = {On a stochastic optimality of the feedback control in the},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {661--675},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a1/}
}
                      
                      
                    TY - JOUR AU - T. A. Belkina AU - Yu. M. Kabanov AU - E. L. Presman TI - On a stochastic optimality of the feedback control in the JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2003 SP - 661 EP - 675 VL - 48 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a1/ LA - ru ID - TVP_2003_48_4_a1 ER -
T. A. Belkina; Yu. M. Kabanov; E. L. Presman. On a stochastic optimality of the feedback control in the. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 661-675. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a1/
