On the recurrence and transience of state-dependent
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 641-660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The state-dependent branching process in random environment $Z_n$—the generalization of Smith–Wilkinson's model—is considered. The Lamperti–Kersting criteria for the recurrence or transience of growth models are applied to the process $X_n:=\log Z_n$, $Z_n\ge 3$.
Keywords: branching process, random environment, state dependence, sums of independent variables, logarithmic moments.
@article{TVP_2003_48_4_a0,
     author = {S. A. Albeverio and M. V. Kozlov},
     title = {On the recurrence and transience of state-dependent},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {641--660},
     year = {2003},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a0/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - M. V. Kozlov
TI  - On the recurrence and transience of state-dependent
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 641
EP  - 660
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a0/
LA  - ru
ID  - TVP_2003_48_4_a0
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A M. V. Kozlov
%T On the recurrence and transience of state-dependent
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 641-660
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a0/
%G ru
%F TVP_2003_48_4_a0
S. A. Albeverio; M. V. Kozlov. On the recurrence and transience of state-dependent. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 641-660. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a0/

[1] Smith W. L., Wilkinson W. E., “On branching processes in random environments”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[2] Lamperti J., “Criteria for the recurrence or transience of stochastic processes. I”, J. Math. Anal. Appl., 1 (1960), 314–330 | DOI | MR | Zbl

[3] Lamperti J., “Criteria for stochastic processes. II. Passage-time moments”, J. Math. Anal. Appl., 7 (1963), 127–145 | DOI | MR | Zbl

[4] Lamperti J., “A new class of probability limit theorems”, J. Math. Mech., 11:5 (1962), 749–772 | MR | Zbl

[5] Kersting G., “On recurrence and transience of growth models”, J. Appl. Probab., 23 (1986), 614–625 | DOI | MR | Zbl

[6] Kozlov M. V., “Printsip invariantnosti dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede s immigratsiei”, Fundamentalnye problemy matematiki i mekhaniki: matematika, Izd-vo MGU, M., 1994, 133–139

[7] Kozlov M. V., “Uslovnaya funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Dokl. AN RAN, 314:1 (1995), 12–15 | MR

[8] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp. | MR