On exact asymptotics in the weak law of large numbers
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 589-596
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let us consider independent identically distributed random variables
$X_1, X_2, \ldots\,$, such that
$$
U_n=\frac{S_n}{B_n} -n\,a_n \longrightarrow \xi_\alpha\qquad
weakly as\quad n\to\infty,
$$
where $S_n = X_1 + \cdots + X_n$, $B_n>0$,
$a_n$ are some numbers
$(n\geq 1)$, and a random variable $\xi_\alpha$
has a stable distribution
with characteristic exponent $\alpha\in (0, 2)$.
$$
\sum_n f_nP\{|U_n|\geq\varepsilon\varphi_n\}\sim
\sum_n f_nP\{|\xi_\alpha|\ge\varepsilon\varphi_n\},\qquad\varepsilon\searrow 0,
$$
Our basic purpose is to find conditions under which
with a positive sequence $\varphi_n$,
which tends  to infinity and
satisfies mild additional restrictions, and with a nonnegative sequence
$f_n$ such that $\sum_n f_n =\infty $.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
independent random variables, law of large numbers, stable law.
                    
                  
                
                
                @article{TVP_2003_48_3_a9,
     author = {L. V. Rozovskii},
     title = {On exact asymptotics in the weak law of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {589--596},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a9/}
}
                      
                      
                    L. V. Rozovskii. On exact asymptotics in the weak law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 589-596. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a9/
