On exact asymptotics in the weak law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 589-596
Cet article a éte moissonné depuis la source Math-Net.Ru
Let us consider independent identically distributed random variables $X_1, X_2, \ldots\,$, such that $$ U_n=\frac{S_n}{B_n} -n\,a_n \longrightarrow \xi_\alpha\qquad weakly as\quad n\to\infty, $$ where $S_n = X_1 + \cdots + X_n$, $B_n>0$, $a_n$ are some numbers $(n\geq 1)$, and a random variable $\xi_\alpha$ has a stable distribution with characteristic exponent $\alpha\in (0, 2)$. $$ \sum_n f_nP\{|U_n|\geq\varepsilon\varphi_n\}\sim \sum_n f_nP\{|\xi_\alpha|\ge\varepsilon\varphi_n\},\qquad\varepsilon\searrow 0, $$ Our basic purpose is to find conditions under which with a positive sequence $\varphi_n$, which tends to infinity and satisfies mild additional restrictions, and with a nonnegative sequence $f_n$ such that $\sum_n f_n =\infty $.
Keywords:
independent random variables, law of large numbers, stable law.
@article{TVP_2003_48_3_a9,
author = {L. V. Rozovskii},
title = {On exact asymptotics in the weak law of large numbers},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {589--596},
year = {2003},
volume = {48},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a9/}
}
L. V. Rozovskii. On exact asymptotics in the weak law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 589-596. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a9/
[1] Gut A., Spataru A., “Precise asymptotics in the Baum–Katz and Davis laws of large numbers”, J. Math. Anal. Appl., 248:1 (2000), 233–246 | DOI | MR | Zbl
[2] Spataru A., “Precise asymptotics in Spitzer's law of large numbers”, J. Theor. Probab., 12:3 (1999), 811–819 | DOI | MR | Zbl
[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[4] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR
[5] Rozovskii L. V., “Odna otsenka dlya veroyatnostei bolshikh uklonenii”, Matem. zametki, 42 (1987), 145–156 | MR