On exact asymptotics in the weak law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 589-596

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us consider independent identically distributed random variables $X_1, X_2, \ldots\,$, such that $$ U_n=\frac{S_n}{B_n} -n\,a_n \longrightarrow \xi_\alpha\qquad weakly as\quad n\to\infty, $$ where $S_n = X_1 + \cdots + X_n$, $B_n>0$, $a_n$ are some numbers $(n\geq 1)$, and a random variable $\xi_\alpha$ has a stable distribution with characteristic exponent $\alpha\in (0, 2)$. $$ \sum_n f_nP\{|U_n|\geq\varepsilon\varphi_n\}\sim \sum_n f_nP\{|\xi_\alpha|\ge\varepsilon\varphi_n\},\qquad\varepsilon\searrow 0, $$ Our basic purpose is to find conditions under which with a positive sequence $\varphi_n$, which tends to infinity and satisfies mild additional restrictions, and with a nonnegative sequence $f_n$ such that $\sum_n f_n =\infty $.
Keywords: independent random variables, law of large numbers, stable law.
@article{TVP_2003_48_3_a9,
     author = {L. V. Rozovskii},
     title = {On exact asymptotics in the weak law of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {589--596},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a9/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On exact asymptotics in the weak law of large numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 589
EP  - 596
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a9/
LA  - ru
ID  - TVP_2003_48_3_a9
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On exact asymptotics in the weak law of large numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 589-596
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a9/
%G ru
%F TVP_2003_48_3_a9
L. V. Rozovskii. On exact asymptotics in the weak law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 589-596. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a9/