Bessel processes, the integral of geometric Brownian motion, and Asian options
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 503-533 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is motivated by questions about averages of stochastic processes which originate in mathematical finance, originally in connection with valuing the so-called Asian options. Starting with [M. Yor, Adv. Appl. Probab., 24 (1992), pp. 509–531], these questions about exponential functionals of Brownian motion have been studied in terms of Bessel processes using the Hartman–Watson theory of [M. Yor, Z. Wahrsch. Verw. Gebiete, 53 (1980), pp. 71–95]. Consequences of this approach for valuing Asian options proper have been spelled out in [H. Geman and M. Yor, Math. Finance, 3 (1993), pp. 349–375] whose Laplace transform results were in fact regarded as a significant advance. Unfortunately, a number of difficulties with the key results of this last paper have surfaced which are now addressed in this paper. One of them in particular is of a principal nature and originates with the Hartman–Watson approach itself: this approach is in general applicable without modifications only if it does not involve Bessel processes of negative indices. The main mathematical contribution of this paper is the development of three principal ways to overcome these restrictions, in particular by merging stochastics and complex analysis in what seems a novel way, and the discussion of their consequences for the valuation of Asian options proper.
Keywords: Asian options, integral of geometric Brownian motion, Bessel processes, complex analytic methods in stochastics.
Mots-clés : Laplace transform
@article{TVP_2003_48_3_a4,
     author = {P. Carr and M. Schr\"oder},
     title = {Bessel processes, the integral of geometric {Brownian} motion, and {Asian} options},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {503--533},
     year = {2003},
     volume = {48},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a4/}
}
TY  - JOUR
AU  - P. Carr
AU  - M. Schröder
TI  - Bessel processes, the integral of geometric Brownian motion, and Asian options
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 503
EP  - 533
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a4/
LA  - en
ID  - TVP_2003_48_3_a4
ER  - 
%0 Journal Article
%A P. Carr
%A M. Schröder
%T Bessel processes, the integral of geometric Brownian motion, and Asian options
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 503-533
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a4/
%G en
%F TVP_2003_48_3_a4
P. Carr; M. Schröder. Bessel processes, the integral of geometric Brownian motion, and Asian options. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 503-533. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a4/

[1] Beals R., Advanced Mathematical Analysis, Springer-Verlag, Berlin, Heidelberg, 1973, 230 pp. | MR | Zbl

[2] Carr P., Schröder M., On the valuation of arithmetic-average Asian options: the Geman-Yor Laplace transform revisited, Mannheim, New York, December 2000, arXiv: math.CA/0102080

[3] Conway J. B., Functions of One Complex Variable, Springer-Verlag, Berlin, Heidelberg, 1984 | MR

[4] Doetsch G., Handbuch der Laplace Transformation, v. I, Birkhäuser, Basel, 1971, 581 pp. | MR

[5] Donati-Martin C., Ghomrasni R., Yor M., “On certain Markov processes attached to exponential functionals of Brownian motion: application to Asian options”, Rev. Mat. Iberoamericana, 17:1 (2001), 179–193 | MR | Zbl

[6] Duffie D., Security Markets, Academic Press, Boston, 1988, 358 pp. | MR | Zbl

[7] Duffie D., Dynamic Asset Pricing Theory, Princeton Univ. Press, Princeton, 1996

[8] Dufresne D., “The distribution of a perpetuity, with applications to risk theory and pension funding”, Scand. Actuar. J., 1–2 (1990), 39–79 | MR | Zbl

[9] Dufresne D., “Laguerre series for Asian and other options”, Math. Finance, 10:4 (2000), 407–428 | DOI | MR | Zbl

[10] Freitag E., Busam R., Funktionentheorie, Springer-Verlag, Berlin, 1993, 473 pp. | MR | Zbl

[11] Fu M. C., Madan D. B., Wang T., “Pricing continuous Asian options: a comparison of Monte Carlo and Laplace inversion methods”, J. Comput. Fin., 2 (1998), 49–74 | MR

[12] Geman H., Yor M., “Bessel processes, Asian options, and perpetuities”, Math. Finance, 3:4 (1993), 349–375 | DOI | Zbl

[13] Karatzas I., Shreve S. E., Methods of Mathematical Finance, Springer-Verlag, New York, 1998, 407 pp. | MR

[14] Knight F. B., Essentials of Brownian Motion and Diffusion, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl

[15] Lebedev H. H., Spetsialnye funktsii i ikh primenenie, Fizmatgiz, M., 1968, 324 pp. | Zbl

[16] Musiela M., Rutkowski M., Martingale Methods in Financial Modelling, Springer-Verlag, Berlin, 1997, 512 pp. | MR

[17] Øksendal B., Stochastic Differential Equations, Springer-Verlag, Berlin, 1998, 324 pp. | MR

[18] Rudin W., Real and Complex Analysis, McGraw Hill, New York, 1987, 416 pp. | MR | Zbl

[19] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1994, 560 pp. | MR | Zbl

[20] Rogers L. C. G., Shi Z., “The value of an Asian option”, J. Appl. Probab., 32 (1995), 1077–1088 | DOI | MR | Zbl

[21] Schröder M., On the valuation of arithmetic-average Asian options: integral representations, Preprint, Universität Mannheim, Mannheim, Oktober 1997 ; revised November 1999 arXiv: math.CV/0003055 | Zbl

[22] Schröder M., On the valuation of arithmetic-average Asian options: explicit formulas, Preprint, Universität Mannheim, Mannheim, Marz 1999

[23] Schröder M., Mathematical ramifications of option valuation: the case of the Asian option, Habilitationsschrift, Universität Mannheim, April 2002

[24] Schröder M., On the valuation of arithmetic-average Asian options: Laguerre series and Theta integrals, Preprint, Universität Mannheim, Mannheim, Dezember 2000, arXiv: math.CA/0012072

[25] Watson G. N., A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1944, 804 pp. | MR | Zbl

[26] Weil A., {ØE}uvres scientifiques (1964–1974), v. 3, Springer-Verlag, Berlin, Heidelberg, 1980, 465 pp.

[27] Yor M., “Loi d'indice du lacet Brownien, et distribution de Hartman–Watson”, Z. Wahrscheinlichkeitstheor. verw. Geb., 53 (1980), 71–95 | DOI | MR

[28] Yor M., “Sur certaines fonctionnelles exponentielles du mouvement Brownien réel”, J. Appl. Probab., 29 (1992), 202–208 | DOI | MR | Zbl

[29] Yor M., “On some exponential functionals of Brownian motion”, Adv. Appl. Probab., 24 (1992), 509–531 | DOI | MR | Zbl

[30] Yor M., Göing-Jaeschke A., A survey and some generalizations of Bessel processes, ETH, Zürich, 1999

[31] Yor M., Donati-Martin C., Matsumoto H., Exponential functionals of Brownian motion and related processes III, Preprint, Paris VI, May 2000 | MR

[32] Yor M., Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2001, 205 pp. | MR