Mots-clés : Laplace transform
@article{TVP_2003_48_3_a4,
author = {P. Carr and M. Schr\"oder},
title = {Bessel processes, the integral of geometric {Brownian} motion, and {Asian} options},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {503--533},
year = {2003},
volume = {48},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a4/}
}
P. Carr; M. Schröder. Bessel processes, the integral of geometric Brownian motion, and Asian options. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 503-533. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a4/
[1] Beals R., Advanced Mathematical Analysis, Springer-Verlag, Berlin, Heidelberg, 1973, 230 pp. | MR | Zbl
[2] Carr P., Schröder M., On the valuation of arithmetic-average Asian options: the Geman-Yor Laplace transform revisited, Mannheim, New York, December 2000, arXiv: math.CA/0102080
[3] Conway J. B., Functions of One Complex Variable, Springer-Verlag, Berlin, Heidelberg, 1984 | MR
[4] Doetsch G., Handbuch der Laplace Transformation, v. I, Birkhäuser, Basel, 1971, 581 pp. | MR
[5] Donati-Martin C., Ghomrasni R., Yor M., “On certain Markov processes attached to exponential functionals of Brownian motion: application to Asian options”, Rev. Mat. Iberoamericana, 17:1 (2001), 179–193 | MR | Zbl
[6] Duffie D., Security Markets, Academic Press, Boston, 1988, 358 pp. | MR | Zbl
[7] Duffie D., Dynamic Asset Pricing Theory, Princeton Univ. Press, Princeton, 1996
[8] Dufresne D., “The distribution of a perpetuity, with applications to risk theory and pension funding”, Scand. Actuar. J., 1–2 (1990), 39–79 | MR | Zbl
[9] Dufresne D., “Laguerre series for Asian and other options”, Math. Finance, 10:4 (2000), 407–428 | DOI | MR | Zbl
[10] Freitag E., Busam R., Funktionentheorie, Springer-Verlag, Berlin, 1993, 473 pp. | MR | Zbl
[11] Fu M. C., Madan D. B., Wang T., “Pricing continuous Asian options: a comparison of Monte Carlo and Laplace inversion methods”, J. Comput. Fin., 2 (1998), 49–74 | MR
[12] Geman H., Yor M., “Bessel processes, Asian options, and perpetuities”, Math. Finance, 3:4 (1993), 349–375 | DOI | Zbl
[13] Karatzas I., Shreve S. E., Methods of Mathematical Finance, Springer-Verlag, New York, 1998, 407 pp. | MR
[14] Knight F. B., Essentials of Brownian Motion and Diffusion, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[15] Lebedev H. H., Spetsialnye funktsii i ikh primenenie, Fizmatgiz, M., 1968, 324 pp. | Zbl
[16] Musiela M., Rutkowski M., Martingale Methods in Financial Modelling, Springer-Verlag, Berlin, 1997, 512 pp. | MR
[17] Øksendal B., Stochastic Differential Equations, Springer-Verlag, Berlin, 1998, 324 pp. | MR
[18] Rudin W., Real and Complex Analysis, McGraw Hill, New York, 1987, 416 pp. | MR | Zbl
[19] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1994, 560 pp. | MR | Zbl
[20] Rogers L. C. G., Shi Z., “The value of an Asian option”, J. Appl. Probab., 32 (1995), 1077–1088 | DOI | MR | Zbl
[21] Schröder M., On the valuation of arithmetic-average Asian options: integral representations, Preprint, Universität Mannheim, Mannheim, Oktober 1997 ; revised November 1999 arXiv: math.CV/0003055 | Zbl
[22] Schröder M., On the valuation of arithmetic-average Asian options: explicit formulas, Preprint, Universität Mannheim, Mannheim, Marz 1999
[23] Schröder M., Mathematical ramifications of option valuation: the case of the Asian option, Habilitationsschrift, Universität Mannheim, April 2002
[24] Schröder M., On the valuation of arithmetic-average Asian options: Laguerre series and Theta integrals, Preprint, Universität Mannheim, Mannheim, Dezember 2000, arXiv: math.CA/0012072
[25] Watson G. N., A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1944, 804 pp. | MR | Zbl
[26] Weil A., {ØE}uvres scientifiques (1964–1974), v. 3, Springer-Verlag, Berlin, Heidelberg, 1980, 465 pp.
[27] Yor M., “Loi d'indice du lacet Brownien, et distribution de Hartman–Watson”, Z. Wahrscheinlichkeitstheor. verw. Geb., 53 (1980), 71–95 | DOI | MR
[28] Yor M., “Sur certaines fonctionnelles exponentielles du mouvement Brownien réel”, J. Appl. Probab., 29 (1992), 202–208 | DOI | MR | Zbl
[29] Yor M., “On some exponential functionals of Brownian motion”, Adv. Appl. Probab., 24 (1992), 509–531 | DOI | MR | Zbl
[30] Yor M., Göing-Jaeschke A., A survey and some generalizations of Bessel processes, ETH, Zürich, 1999
[31] Yor M., Donati-Martin C., Matsumoto H., Exponential functionals of Brownian motion and related processes III, Preprint, Paris VI, May 2000 | MR
[32] Yor M., Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2001, 205 pp. | MR