Tauberian theorems and asymptotics of infinitely divisible
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 487-502
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper proves three multidimensional Tauberian theorems,
which we use to prove the asymptotics at infinity of infinitely divisible distributions
with support in a closed convex acute solid and homogeneous cone
in $R^n$.
Keywords:
regularly varying functions along a family of operators, completely admissible functions for a cone, infinitely divisible distributions, spectral Lévy measure.
@article{TVP_2003_48_3_a3,
author = {A. L. Yakymiv},
title = {Tauberian theorems and asymptotics of infinitely divisible},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {487--502},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a3/}
}
A. L. Yakymiv. Tauberian theorems and asymptotics of infinitely divisible. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 487-502. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a3/