On minimization and maximization
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 466-486 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with some problems related to the relative entropy minimization under linear constraints. We discuss the relation between this problem and statistical physics, information theory, and financial mathematics. Furthermore, in financial mathematics we provide the explicit form of the minimal entropy martingale measure in the general discrete-time asset price model. We also give the explicit solution of the problem of the exponential utility maximization in the general discrete-time asset price model.
Keywords: amount of information, average cost of coding, density, entropy, exponential utility, free energy, Gibbs state, interior energy, Kullback–Leibler information, metastable state, minimal entropy martingale measure, Nernst theorem, pressure, relative entropy, stable state, temperature
Mots-clés : data compression, Esscher transform, mass, volume.
@article{TVP_2003_48_3_a2,
     author = {V. P. Maslov and A. S. Cherny},
     title = {On minimization and maximization},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {466--486},
     year = {2003},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a2/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - A. S. Cherny
TI  - On minimization and maximization
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 466
EP  - 486
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a2/
LA  - ru
ID  - TVP_2003_48_3_a2
ER  - 
%0 Journal Article
%A V. P. Maslov
%A A. S. Cherny
%T On minimization and maximization
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 466-486
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a2/
%G ru
%F TVP_2003_48_3_a2
V. P. Maslov; A. S. Cherny. On minimization and maximization. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 466-486. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a2/

[1] Bucklew J., Large Deviation Techniques in Decision, Simulation, and Estimation, Wiley, New York, 1990, 270 pp. | MR

[2] Cover T. M., Thomas J. A., Elements of Information Theory, Wiley, New York, 1991, 542 pp. | MR

[3] Csiszár I., “$I$-divergence geometry of probability distributions and minimization problems”, Ann. Probab., 3:1 (1975), 146–158 | DOI | MR | Zbl

[4] Delbaen F., Grandits P., Rheinlander T., Samperi D., Schweizer M., Strieker C., “Exponential hedging and entropic penalties”, Math. Finance, 12:2 (2002), 99–123 | DOI | MR | Zbl

[5] Dellacherie G., Meyer P.-A., Probabilites et potentiel, v. I, Hermann, Paris, 1976

[6] Follmer H., Schied A., Stochastic Finance. An Introduction in Discrete Time, de Gruyter, Berlin, 2002, 422 pp. | MR

[7] Frittelli M., “The minimal entropy martingale measure and the valuation problem in incomplete markets”, Math. Finance, 10:1 (2000), 39–52 | DOI | MR | Zbl

[8] Fujiwara T., Miyahara Y., “The minimal entropy martingale measures for geometric Levy processes”, Finance Stoch., 7:4 (2003), 509–531 | DOI | MR | Zbl

[9] Goll T., Ruschendorf L., “Minimax and minimal distance martingale measures and their relationship to portfolio optimization”, Finance Stoch., 5:4 (2001), 557–581 | DOI | MR | Zbl

[10] Jaynes E. T., Papers on Probability, Statistics and Statistical Physics, Reidel, Dordrecht, 1983, 434 pp. | MR | Zbl

[11] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 5, Statisticheskaya fizika, Nauka, M., 1995 | Zbl

[12] Maslov V. P., “The notions of enropy, Hamiltonian, temperature, and thermodynamical limit in probability theory used for solving model problems in econophysics”, Russian J. Math. Phys., 9:4 (2002), 437–445 | MR | Zbl

[13] Miyahara Y., Novikov A., “Geometric Levy process pricing model”, Trudy MIAN, 237, 2002, 185–200 | MR | Zbl

[14] Rogers L. C. G., “Equivalent martingale measures and no-arbitrage”, Stochastics Stochastics Rep., 51:1–2 (1995), 41–49 | MR

[15] Schachermayer W., “Optimal investment in incomplete markets when wealth may become negative”, Ann. Appl. Probab., 11:3 (2001), 694–734 | DOI | MR | Zbl

[16] Shiryaev A. H., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, 2, Fazis, M., 1998, 544 pp.; 512 pp.

[17] Stratonovich R. L., Teoriya informatsii, Sovetskoe radio, M., 1975