Mots-clés : Poisson approximation, total variation distance
@article{TVP_2003_48_3_a14,
author = {B. Roos},
title = {Poisson approximation via the convolution with {Kornya{\textendash}Presman} signed measures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {628--632},
year = {2003},
volume = {48},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a14/}
}
B. Roos. Poisson approximation via the convolution with Kornya–Presman signed measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 628-632. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a14/
[1] Borovkov K., Pfeifer D., “On improvements of the order of approximation in the Poisson limit theorem”, J. Appl. Probab., 33:1 (1996), 146–155 | DOI | MR | Zbl
[2] Conway J. B., Functions of One Complex Variable, Springer-Verlag, Berlin, 1978, 317 pp. | MR
[3] Kornya P. S., “Distribution of aggregate claims in the individual risk theory model”, Trans. Soc. Actuaries, 35 (1983), 823–858
[4] Presman E. L., “O sblizhenii binomialnykh i bezgranichno delimykh raspredelenii”, Teoriya veroyatn. i ee primen., 28:2 (1983), 372–382 | MR | Zbl
[5] Rényi A., “Théorie des éléments saillants d'une suite d'observations”, Colloquium on Combinatorial Methods in Probability Theory, Mathematisk Institut Aarhus Universitet, Aarhus, 1962, 104–115
[6] Roos B., “Asymptotics and sharp bounds in the Poisson approximation to the Poissonbinomial distribution”, Bernoulli, 5:6 (1999), 1021–1034 | DOI | MR | Zbl
[7] Roos B., “Kerstan's method in the multivariate Poisson approximation: an expansion in the exponent”, Teoriya veroyatn. i ee primen., 47:2 (2002), 397–402 | MR | Zbl