On the existence of probability distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 620-627

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X=\{0,\ldots, n-1\}$ and $\Gamma=\{(x_1,\ldots, x_s)\}\in X^s\colon\,\sum_{\sigma=1}^s x_\sigma=n-1$. For the marginals of probability distributions on $\Gamma$ with the additional property of forming an $s$-tuple of decreasing probabilities on $X$ a simple characterization is given. This has an interesting application to asymptotic spectra in the sense of Strassen [J. Reine Angew. Math., 384 (1988), pp. 102–152; 413 (1991), pp. 127–180]. Some correlated questions are discussed in an appendix.
Keywords: probability law, marginal distribution, asymptotic spectra in the sense of Strassen.
@article{TVP_2003_48_3_a13,
     author = {F. Mauch},
     title = {On the existence of probability distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {620--627},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a13/}
}
TY  - JOUR
AU  - F. Mauch
TI  - On the existence of probability distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 620
EP  - 627
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a13/
LA  - en
ID  - TVP_2003_48_3_a13
ER  - 
%0 Journal Article
%A F. Mauch
%T On the existence of probability distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 620-627
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a13/
%G en
%F TVP_2003_48_3_a13
F. Mauch. On the existence of probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 620-627. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a13/