On the existence of probability distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 620-627
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X=\{0,\ldots, n-1\}$ and $\Gamma=\{(x_1,\ldots, x_s)\}\in
X^s\colon\,\sum_{\sigma=1}^s
x_\sigma=n-1$. For the marginals of probability distributions
on $\Gamma$ with the additional property of forming an $s$-tuple
of decreasing probabilities on $X$ a simple characterization
is given. This has an interesting application to asymptotic
spectra in the sense of Strassen
[J. Reine Angew. Math.,
384 (1988), pp. 102–152;
413 (1991), pp. 127–180].
Some correlated questions are discussed in an appendix.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
probability law, marginal distribution, asymptotic spectra in the sense of Strassen.
                    
                    
                    
                  
                
                
                @article{TVP_2003_48_3_a13,
     author = {F. Mauch},
     title = {On the existence of probability distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {620--627},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a13/}
}
                      
                      
                    F. Mauch. On the existence of probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 620-627. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a13/
