Convergence of the Poincar\'{e} constant
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 615-620

Voir la notice de l'article provenant de la source Math-Net.Ru

The Poincaré constant $R_Y$ of a random variable $Y$ relates the $L^2(Y)$-norm of a function $g$ and its derivative $g'$. Since $R_Y - D(Y)$ is positive, with equality if and only if $Y$ is normal, it can be seen as a distance from the normal distribution. In this paper we establish the best possible rate of convergence of this distance in the central limit theorem. Furthermore, we show that $R_Y$ is finite for discrete mixtures of normals, allowing us to add rates to the proof of the central limit theorem in the sense of relative entropy.
Keywords: Poincaré constant, spectral gap, central limit theorem, Fisher information.
@article{TVP_2003_48_3_a12,
     author = {O. Johnson},
     title = {Convergence of the {Poincar\'{e}} constant},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {615--620},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/}
}
TY  - JOUR
AU  - O. Johnson
TI  - Convergence of the Poincar\'{e} constant
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 615
EP  - 620
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/
LA  - en
ID  - TVP_2003_48_3_a12
ER  - 
%0 Journal Article
%A O. Johnson
%T Convergence of the Poincar\'{e} constant
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 615-620
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/
%G en
%F TVP_2003_48_3_a12
O. Johnson. Convergence of the Poincar\'{e} constant. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 615-620. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/