Convergence of the Poincar\'{e} constant
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 615-620
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Poincaré constant $R_Y$ of a random variable $Y$ relates the
$L^2(Y)$-norm of a function $g$ and its derivative $g'$.
Since $R_Y - D(Y)$
is positive, with equality if and only if $Y$ is normal, it can be seen as a
distance from the normal distribution. In this paper
we establish the best possible rate of convergence of this distance
in the central limit theorem. Furthermore, we show that $R_Y$ is
finite for discrete mixtures of normals, allowing us to add rates
to the proof of the central limit theorem in the sense of
relative entropy.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Poincaré constant, spectral gap, central limit theorem, Fisher information.
                    
                    
                    
                  
                
                
                @article{TVP_2003_48_3_a12,
     author = {O. Johnson},
     title = {Convergence of the {Poincar\'{e}} constant},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {615--620},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/}
}
                      
                      
                    O. Johnson. Convergence of the Poincar\'{e} constant. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 615-620. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/
                  
                