Convergence of the Poincaré constant
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 615-620 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Poincaré constant $R_Y$ of a random variable $Y$ relates the $L^2(Y)$-norm of a function $g$ and its derivative $g'$. Since $R_Y - D(Y)$ is positive, with equality if and only if $Y$ is normal, it can be seen as a distance from the normal distribution. In this paper we establish the best possible rate of convergence of this distance in the central limit theorem. Furthermore, we show that $R_Y$ is finite for discrete mixtures of normals, allowing us to add rates to the proof of the central limit theorem in the sense of relative entropy.
Keywords: spectral gap, central limit theorem, Fisher information.
Mots-clés : Poincaré constant
@article{TVP_2003_48_3_a12,
     author = {O. Johnson},
     title = {Convergence of the {Poincar\'e} constant},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {615--620},
     year = {2003},
     volume = {48},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/}
}
TY  - JOUR
AU  - O. Johnson
TI  - Convergence of the Poincaré constant
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 615
EP  - 620
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/
LA  - en
ID  - TVP_2003_48_3_a12
ER  - 
%0 Journal Article
%A O. Johnson
%T Convergence of the Poincaré constant
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 615-620
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/
%G en
%F TVP_2003_48_3_a12
O. Johnson. Convergence of the Poincaré constant. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 615-620. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a12/

[1] Barron A. R., “Entropy and the central limit theorem”, Ann. Probab., 14:1 (1986), 336–342 | DOI | MR | Zbl

[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[3] Borovkov A. A., Utev S. A., “Ob odnom neravenstve i svyazannoi s nim kharakterizatsii normalnogo raspredeleniya”, Teoriya veroyatn. i ee primen., 28:2 (1983), 209–218 | MR | Zbl

[4] Brown L. D., “A proof of the central limit theorem motivated by the Cramér-Rao inequality”, Statistics and Probability, Essays in Honor of C. R. Rao, eds. G. Kallianpur, P. R. Krishnaiah, and J. K. Ghosh, North-Holland, New York, 1982, 141–148 | MR

[5] Cacoullos Th., “On upper and lower bounds for the variance of a function of a random variable”, Ann. Probab., 10:3 (1982), 799–809 | DOI | MR | Zbl

[6] Chen L. H. Y., “An inequality for the multivariate normal distribution”, J. Multivariate Anal., 12:2 (1982), 306–315 | DOI | MR | Zbl

[7] Chen L. H. Y., Lou J. H., “Asymptotic normality and convergence of eigenvalues”, Stochastic Process. Appl., 34:2 (1990), 197

[8] Chernoff H., “A note on an inequality involving the normal distribution”, Ann. Probab., 9:3 (1981), 533–535 | DOI | MR | Zbl

[9] Johnson O. T., Barron A. R., Fisher information inequalities and the central limit theorem, arXiv: math/0111020 | MR

[10] Klaassen C. A. J., “On an inequality of Chernoff”, Ann. Probab., 13:3 (1985), 966–974 | DOI | MR | Zbl

[11] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[12] Utev S. A., “An application of integrodifferential inequalities in probability theory”, Siberian Adv. Math., 2:4 (1992), 164–199 | MR