@article{TVP_2003_48_3_a10,
author = {K. Benhenni and R. Drouilhet},
title = {Adjusted {Euler{\textendash}MacLaurin} predictor for},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {596--608},
year = {2003},
volume = {48},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a10/}
}
K. Benhenni; R. Drouilhet. Adjusted Euler–MacLaurin predictor for. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 596-608. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a10/
[1] Benhenni K., “Approximating integrals of stochastic processes: Extensions”, J. Appl. Probab., 35:4 (1998), 843–855 | DOI | MR | Zbl
[2] Benhenni K., Cambanis S., “Sampling designs for estimating integrals of stochastic processes”, Ann. Statist., 20:1 (1992), 161–194 | DOI | MR | Zbl
[3] Benhenni K., Cambanis S., “Sampling designs for estimating integrals of stochastic processes using quadratic mean derivatives”, Approximation Theory, ed. G. Anastassiou, Dekker, New York, 1992, 93–128 | MR
[4] Cressie N., Statistics for Spatial Data, John Wiley, New York, 1991 | MR | Zbl
[5] Eubank R. L., Smith P. L., Smith P. W., “A note on optimal and asymptotically optimal designs for certain time series models”, Ann. Statist., 10:4 (1982), 1295–1301 | DOI | MR | Zbl
[6] Istas J., Laredo C., “Estimating functionals of a stochastic process”, Adv. Appl. Probab., 29 (1997), 249–270 | DOI | MR | Zbl
[7] Journel A. G., “New ways of assessing spatial distribution of pollutants”, Environmental Sampling for Hazardous Wastes, eds. G. E. Schweitzer, J. A. Santolucito, American Chemical Society, Washington, D.C., 1984, 109–118
[8] Matern B., Spatial Variation, Lectures Notes in Statist., 36, 2nd ed., Springer, New York, 1986 | MR | Zbl
[9] Olea R. A., “Sampling design optimization for spatial functions”, Math. Geology, 16 (1984), 369–392 | DOI
[10] Ripley B. D., Spatial Statistics, John Wiley, New York, 1981 | MR | Zbl
[11] Ritter K., “Asymptotic optimality of regular sequence designs”, Ann. Statist., 24:5 (1996), 2081–2096 | DOI | MR | Zbl
[12] Sacks J., Ylvisaker D., “Designs for regression problems with correlated errors”, Ann. Math. Statist., 37 (1966), 68–89 | DOI | MR
[13] Sacks J., Ylvisaker D., “Designs for regression problems with correlated errors. III”, Ann. Math. Statist., 41 (1970), 2057–2074 | DOI | MR | Zbl
[14] Sacks J., Ylvisaker D., “Statistical designs and integral approximations”, Proc. Twelfth Biennial Sem. Can. Math. Congr. On Time Series and Stochastic Proceses; Convexity and Combinatorics (Vancouver, B.C., 1969), Montreal, Que., 1970, 115–136 | MR | Zbl
[15] Stein M. L., “Asymptotic properties of centered systematic sampling for predicting integrals of spatial processes”, Ann. Appl. Probab., 3:3 (1993), 874–880 | DOI | MR | Zbl
[16] Stein M. L., “Predicting integrals of stochastic processes”, Ann. Appl. Probab., 5 (1995), 158–170 | DOI | MR | Zbl
[17] Tubilla A., Error convergence rates for estimates of multidimensional integrals of random functions, Tech. Rep., 72, Department of Statistics, Stanford University, 1975
[18] Yfantis E. A., Flatman G. T., Baher J. V., “Efficiency of kriging estimations for square, triangular and hexagonal grids”, J. Math. Geology, 19 (1987), 183–205 | DOI