Limit theorem for an intermediate subcritical branching process in a
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 453-465
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The asymptotic behavior of the survival probability of an
intermediate subcritical branching process $Z_n$ in a
random
environment is found when a transformation of the reproduction law
of the offspring number is attracted to a stable law $\alpha\in
(1,2]$. It is shown that the distribution of the random variable
$\{Z_n\}$
given $Z_n>0$ converges to a nondegenerate distribution
as $n\to\infty$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
branching processes in a random environment, survival probability, intermediate subcritical process, limit theorem, random walks
Mots-clés : stable distributions.
                    
                  
                
                
                Mots-clés : stable distributions.
@article{TVP_2003_48_3_a1,
     author = {V. A. Vatutin},
     title = {Limit theorem for an intermediate subcritical branching process in a},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {453--465},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a1/}
}
                      
                      
                    V. A. Vatutin. Limit theorem for an intermediate subcritical branching process in a. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 453-465. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a1/
