Mots-clés : stable distributions.
@article{TVP_2003_48_3_a1,
author = {V. A. Vatutin},
title = {Limit theorem for an intermediate subcritical branching process in a},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {453--465},
year = {2003},
volume = {48},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a1/}
}
V. A. Vatutin. Limit theorem for an intermediate subcritical branching process in a. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 453-465. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a1/
[1] Afanasev V. I., “Predelnye teoremy dlya umerenno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 10:1 (1998), 141–157 | MR
[2] Afanasev V. I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskretn. matem., 13:1 (2001), 132–157
[3] Dekking M., “On the survival probability of a branching process in a finite state i.i.d. environment”, Stoch. Proc. Appl., 27:1 (1988), 151–157 | MR
[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[5] Fleischmann K., Vatutin V. A., “Reduced subcritical branching processes in random environment”, Adv. Appl. Probab., 31:1 (1999), 88–111 | DOI | MR | Zbl
[6] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl
[7] Geiger J., Kersting G., Vatutin V. A., “The survival probability of a subcritical branching process in random environment”, Ann. Inst. Henri-Poincare (B) Probability and Statistics, 39:4 (2003), 593–620 | DOI | MR | Zbl
[8] Guivarc'h Y., Liu Q., “Proprietes asymptotiques des processus de branchement en environment aletoire”, C. R. Acad. Sci. Paris, Serie I, 332:4 (2001), 339–344 | MR
[9] Hirano K., “Determination of the limiting coefficient for exponential functionals of random walks with positive drift”, J. Math. Sci., Tokyo, 5:22 (1998), 299–332 | MR | Zbl
[10] Kozlov M. V., “Kriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Teoriya veroyatn. i ee primen., 21:4 (1976), 813–825 | MR | Zbl
[11] Liu Q., “On the survival probability of a branching process in a random environment”, Ann. Inst. Henri-Poincare, 32:1 (1996), 1–10 | MR
[12] Nagaev A. V., “Kramerovskie bolshie ukloneniya v sluchae, kogda sopryazhennoe raspredelenie imeet tyazhelyi khvost”, Teoriya veroyatn. i ee primen., 43:3 (1998), 456–475 | MR | Zbl
[13] D'Souza J. C., Hambly B. M., “On the survival probability of a branching process in a random environment”, Adv. Appl. Probab., 29:1 (1997), 38–55 | DOI | MR
[14] Shiryaev A. H., Veroyatnost, Nauka, M., 1980, 576 pp. | MR | Zbl
[15] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee primen., 48:2 (2003), 274–300 | MR
[16] Vatutin V. A., Zubkov A. M., “Branching Processes II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl