Limit theorem for an intermediate subcritical branching process in a
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 453-465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of the survival probability of an intermediate subcritical branching process $Z_n$ in a random environment is found when a transformation of the reproduction law of the offspring number is attracted to a stable law $\alpha\in (1,2]$. It is shown that the distribution of the random variable $\{Z_n\}$ given $Z_n>0$ converges to a nondegenerate distribution as $n\to\infty$.
Keywords: branching processes in a random environment, survival probability, intermediate subcritical process, limit theorem, random walks
Mots-clés : stable distributions.
@article{TVP_2003_48_3_a1,
     author = {V. A. Vatutin},
     title = {Limit theorem for an intermediate subcritical branching process in a},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {453--465},
     year = {2003},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - Limit theorem for an intermediate subcritical branching process in a
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 453
EP  - 465
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a1/
LA  - ru
ID  - TVP_2003_48_3_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T Limit theorem for an intermediate subcritical branching process in a
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 453-465
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a1/
%G ru
%F TVP_2003_48_3_a1
V. A. Vatutin. Limit theorem for an intermediate subcritical branching process in a. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 453-465. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a1/

[1] Afanasev V. I., “Predelnye teoremy dlya umerenno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 10:1 (1998), 141–157 | MR

[2] Afanasev V. I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskretn. matem., 13:1 (2001), 132–157

[3] Dekking M., “On the survival probability of a branching process in a finite state i.i.d. environment”, Stoch. Proc. Appl., 27:1 (1988), 151–157 | MR

[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[5] Fleischmann K., Vatutin V. A., “Reduced subcritical branching processes in random environment”, Adv. Appl. Probab., 31:1 (1999), 88–111 | DOI | MR | Zbl

[6] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl

[7] Geiger J., Kersting G., Vatutin V. A., “The survival probability of a subcritical branching process in random environment”, Ann. Inst. Henri-Poincare (B) Probability and Statistics, 39:4 (2003), 593–620 | DOI | MR | Zbl

[8] Guivarc'h Y., Liu Q., “Proprietes asymptotiques des processus de branchement en environment aletoire”, C. R. Acad. Sci. Paris, Serie I, 332:4 (2001), 339–344 | MR

[9] Hirano K., “Determination of the limiting coefficient for exponential functionals of random walks with positive drift”, J. Math. Sci., Tokyo, 5:22 (1998), 299–332 | MR | Zbl

[10] Kozlov M. V., “Kriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Teoriya veroyatn. i ee primen., 21:4 (1976), 813–825 | MR | Zbl

[11] Liu Q., “On the survival probability of a branching process in a random environment”, Ann. Inst. Henri-Poincare, 32:1 (1996), 1–10 | MR

[12] Nagaev A. V., “Kramerovskie bolshie ukloneniya v sluchae, kogda sopryazhennoe raspredelenie imeet tyazhelyi khvost”, Teoriya veroyatn. i ee primen., 43:3 (1998), 456–475 | MR | Zbl

[13] D'Souza J. C., Hambly B. M., “On the survival probability of a branching process in a random environment”, Adv. Appl. Probab., 29:1 (1997), 38–55 | DOI | MR

[14] Shiryaev A. H., Veroyatnost, Nauka, M., 1980, 576 pp. | MR | Zbl

[15] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee primen., 48:2 (2003), 274–300 | MR

[16] Vatutin V. A., Zubkov A. M., “Branching Processes II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl