On the ratio between the maximal and
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 435-452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{\xi_n\}$ be a critical branching process in a random environment. Under some restrictions on the characteristics of the process, we show that the ratio of $\sum_{i=0}^n\xi_i$ to $\max_{0\leqq i\leqq n}\xi_i$, given $\{\xi_n>0\}$, converges in distribution as $n\to\infty$ to a random variable taking on values in $(1,+\infty)$.
Keywords: branching process in a random environment, conditional random walk, conditional limit theorems.
@article{TVP_2003_48_3_a0,
     author = {V. I. Afanasyev},
     title = {On the ratio between the maximal and},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {435--452},
     year = {2003},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On the ratio between the maximal and
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 435
EP  - 452
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a0/
LA  - ru
ID  - TVP_2003_48_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On the ratio between the maximal and
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 435-452
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a0/
%G ru
%F TVP_2003_48_3_a0
V. I. Afanasyev. On the ratio between the maximal and. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 435-452. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a0/

[1] Afanasev V. I., “Funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 13:4 (2001), 73–91 | MR

[2] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 9:3 (1997), 52–67 | MR

[3] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl

[4] Kozlov M. V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 21:4 (1976), 813–825 | MR | Zbl

[5] Vatutin V. A., “Redutsirovannye vetvyaschiesya protsessy v sluchainoi srede: kriticheskii sluchai”, Teoriya veroyatn. i ee primen., 47:1 (2002), 21–38 | MR | Zbl

[6] Kozlov M. V., “Uslovnaya funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Dokl. RAN, 344:1 (1995), 12–15 | MR | Zbl

[7] Afanasev V. I., “O maksimume kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 11:2 (1999), 86–102 | MR

[8] Afanasev V. I., “O momente dostizheniya fiksirovannogo urovnya kriticheskim vetvyaschimsya protsessom v sluchainoi srede”, Diskretn. matem., 11:4 (1999), 33–47 | MR

[9] Afanasev V. I., “O momente dostizheniya maksimuma kriticheskim vetvyaschimsya protsessom v sluchainoi srede i ostanovlennym sluchainym bluzhdaniem”, Diskretn. matem., 12:2 (2000), 31–50 | MR

[10] Afanasev V. I., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 5:1 (1993), 45–58 | MR

[11] Hooghiemstra G., “Conditioned limit theorems for waiting-time processes of the M/G/l queue”, J. Appl. Probab., 20:3 (1983), 675–688 | DOI | MR | Zbl