Martingales and first passage times for Ornstein–Uhlenbeck processes with a jump component
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 340-358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using martingale technique, we show that a distribution of the first-passage time over a level for the Ornstein–Uhlenbeck process with jumps is exponentially bounded. In the case of absence of positive jumps, the Laplace transform for this passage time is found. Further, the maximal inequalities are also given when the marginal distribution is stable.
Keywords: exponential martingales, first-passage times, Ornstein–Uhlenbeck process, moment Wald's identity, maximal inequalities
Mots-clés : Laplace transform, stable distribution.
@article{TVP_2003_48_2_a6,
     author = {A. A. Novikov},
     title = {Martingales and first passage times for {Ornstein{\textendash}Uhlenbeck} processes with a jump component},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {340--358},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a6/}
}
TY  - JOUR
AU  - A. A. Novikov
TI  - Martingales and first passage times for Ornstein–Uhlenbeck processes with a jump component
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 340
EP  - 358
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a6/
LA  - ru
ID  - TVP_2003_48_2_a6
ER  - 
%0 Journal Article
%A A. A. Novikov
%T Martingales and first passage times for Ornstein–Uhlenbeck processes with a jump component
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 340-358
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a6/
%G ru
%F TVP_2003_48_2_a6
A. A. Novikov. Martingales and first passage times for Ornstein–Uhlenbeck processes with a jump component. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 340-358. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a6/

[1] Skorokhod A. V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986, 320 pp. | MR

[2] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[3] Perry D., Stadje W., Zacks S., “First-exit times for Poisson shot noise”, Stoch. Models, 17:1 (2001), 25–37 | DOI | MR | Zbl

[4] Grigoriu M., Applied Non-Gaussian Processes, Prentice Hall PTR, Englewood Cliffs, 1995, 442 pp.

[5] Barndorff-Nielsen O. E., Shephard N., “Modelling by Lévy processes for financial econometrics”, Lévy Processes. Theory and Applications, eds. O. E. Barndorff-Nielsen et al., Birkhäuser, Boston, 2001, 283–318 | MR | Zbl

[6] Cáceres M. O., Budini A. A., “The generalized Ornstein–Uhlenbeck process”, J. Phys. A, 30:24 (1997), 8427–8444 | DOI | MR | Zbl

[7] Hadjiev D. I., “The first passage problem for generalized Ornstein–Uhlenbeck processes with nonpositive jumps”, Lecture Notes in Math., 1123, 1985, 80–90 | MR | Zbl

[8] Novikov A. A., “O momente pervogo vykhoda protsessa avtoregressii za uroven i odno primenenie v zadache “razladki””, Teoriya veroyatn. i ee primen., 35:2 (1990), 282–292 | MR

[9] Novikov A. A., Ergashev B. A., “Predelnye teoremy dlya momenta dostizheniya urovnya protsessom avtoregressii”, Trudy MIAN, 202, 1993, 209–233 | Zbl

[10] Tsurui A., Osaki S., “On a first-passage problem for a cumulative process with exponential decay”, Stochastic Process. Appl., 4:1 (1976), 79–88 | DOI | MR | Zbl

[11] Graversen S. E., Peskir G., “Maximal inequalities for the Ornstein–Uhlenbeck process”, Proc. Amer. Math. Soc., 128:10 (2000), 3035–3041 | DOI | MR | Zbl

[12] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1971, 1108 pp.

[13] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, 1, 2, Fizmatlit, M., 1994, 544 pp. ; 368 с. | MR

[14] Shepp L. A., “Explicit solutions to some problems of optimal stopping”, Ann. Math. Statist., 40 (1969), 993–1010 | DOI | MR | Zbl

[15] Robbins H., Siegmund D., “Boundary crossing probabilities for the Wiener process and sample sums”, Ann. Math. Statist., 41 (1970), 1410–1429 | DOI | MR | Zbl

[16] Novikov A. A., “Martingalnyi podkhod v zadachakh o vremeni pervogo peresecheniya nelineinykh granits”, Trudy MIAN, 158, 1981, 130–152 ; 230 | MR | Zbl | Zbl

[17] Darling D. A., Siegert A. J. F., “The first passage problem for a continuous Markov process”, Ann. Math. Statist., 24 (1953), 624–639 | DOI | MR | Zbl

[18] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss, 293, Springer-Verlag, Berlin, 1999, 602 pp. | MR | Zbl

[19] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[20] Olver F. W. J., Asymptotics and Special Functions, Academic Press, New York, London, 1974, 572 pp. | MR

[21] Borovkov K., Novikov A., “On a piece-wise deterministic Markov process model”, Statist. Probab. Lett., 53:4 (2001), 421–428 | DOI | MR | Zbl

[22] Novikov A., Borovkov K., Shinjikashvili E., Approximations for the maximum of the Orsntein–Uhlenbeck processes with a jump component, Preprint, University of Technology, Sydney, 2002 | Zbl

[23] Wolfram S., The Mathematica Book, Cambridge Univ. Press, Cambridge, 1999, 1470 pp. | MR | Zbl