Mots-clés : Laplace transform, stable distribution.
@article{TVP_2003_48_2_a6,
author = {A. A. Novikov},
title = {Martingales and first passage times for {Ornstein{\textendash}Uhlenbeck} processes with a jump component},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {340--358},
year = {2003},
volume = {48},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a6/}
}
A. A. Novikov. Martingales and first passage times for Ornstein–Uhlenbeck processes with a jump component. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 340-358. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a6/
[1] Skorokhod A. V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986, 320 pp. | MR
[2] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR
[3] Perry D., Stadje W., Zacks S., “First-exit times for Poisson shot noise”, Stoch. Models, 17:1 (2001), 25–37 | DOI | MR | Zbl
[4] Grigoriu M., Applied Non-Gaussian Processes, Prentice Hall PTR, Englewood Cliffs, 1995, 442 pp.
[5] Barndorff-Nielsen O. E., Shephard N., “Modelling by Lévy processes for financial econometrics”, Lévy Processes. Theory and Applications, eds. O. E. Barndorff-Nielsen et al., Birkhäuser, Boston, 2001, 283–318 | MR | Zbl
[6] Cáceres M. O., Budini A. A., “The generalized Ornstein–Uhlenbeck process”, J. Phys. A, 30:24 (1997), 8427–8444 | DOI | MR | Zbl
[7] Hadjiev D. I., “The first passage problem for generalized Ornstein–Uhlenbeck processes with nonpositive jumps”, Lecture Notes in Math., 1123, 1985, 80–90 | MR | Zbl
[8] Novikov A. A., “O momente pervogo vykhoda protsessa avtoregressii za uroven i odno primenenie v zadache “razladki””, Teoriya veroyatn. i ee primen., 35:2 (1990), 282–292 | MR
[9] Novikov A. A., Ergashev B. A., “Predelnye teoremy dlya momenta dostizheniya urovnya protsessom avtoregressii”, Trudy MIAN, 202, 1993, 209–233 | Zbl
[10] Tsurui A., Osaki S., “On a first-passage problem for a cumulative process with exponential decay”, Stochastic Process. Appl., 4:1 (1976), 79–88 | DOI | MR | Zbl
[11] Graversen S. E., Peskir G., “Maximal inequalities for the Ornstein–Uhlenbeck process”, Proc. Amer. Math. Soc., 128:10 (2000), 3035–3041 | DOI | MR | Zbl
[12] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1971, 1108 pp.
[13] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, 1, 2, Fizmatlit, M., 1994, 544 pp. ; 368 с. | MR
[14] Shepp L. A., “Explicit solutions to some problems of optimal stopping”, Ann. Math. Statist., 40 (1969), 993–1010 | DOI | MR | Zbl
[15] Robbins H., Siegmund D., “Boundary crossing probabilities for the Wiener process and sample sums”, Ann. Math. Statist., 41 (1970), 1410–1429 | DOI | MR | Zbl
[16] Novikov A. A., “Martingalnyi podkhod v zadachakh o vremeni pervogo peresecheniya nelineinykh granits”, Trudy MIAN, 158, 1981, 130–152 ; 230 | MR | Zbl | Zbl
[17] Darling D. A., Siegert A. J. F., “The first passage problem for a continuous Markov process”, Ann. Math. Statist., 24 (1953), 624–639 | DOI | MR | Zbl
[18] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss, 293, Springer-Verlag, Berlin, 1999, 602 pp. | MR | Zbl
[19] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR
[20] Olver F. W. J., Asymptotics and Special Functions, Academic Press, New York, London, 1974, 572 pp. | MR
[21] Borovkov K., Novikov A., “On a piece-wise deterministic Markov process model”, Statist. Probab. Lett., 53:4 (2001), 421–428 | DOI | MR | Zbl
[22] Novikov A., Borovkov K., Shinjikashvili E., Approximations for the maximum of the Orsntein–Uhlenbeck processes with a jump component, Preprint, University of Technology, Sydney, 2002 | Zbl
[23] Wolfram S., The Mathematica Book, Cambridge Univ. Press, Cambridge, 1999, 1470 pp. | MR | Zbl