@article{TVP_2003_48_2_a5,
author = {M. A. Lifshits and Zh. Shi},
title = {Lower functions of empirical processes and {Brownian} sheets},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {321--339},
year = {2003},
volume = {48},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a5/}
}
M. A. Lifshits; Zh. Shi. Lower functions of empirical processes and Brownian sheets. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 321-339. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a5/
[1] Ito K., Makkin G. P., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 394 pp. | Zbl
[2] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995, 256 pp. | Zbl
[3] Mogulskii A. A., “O zakone povtornogo logarifma v forme Chzhuna dlya funktsionalnykh prostranstv”, Teoriya veroyatn. i ee primen., 24:2 (1979), 399–407 | MR
[4] Albin J. M. P., “Upper and lower classes for $L^2$-and $L^p$-norms of Brownian motion and norms of $\alpha$-stable motion”, Stochastic Process. Appl., 58:1 (1995), 91–103 | DOI | MR | Zbl
[5] Albin J. M. P., “Minima of $H$-valued Gaussian processes”, Ann. Probab., 24:2 (1996), 788–824 | DOI | MR | Zbl
[6] Breiman L., “A delicate law of the iterated logarithm for non-decreasing stable processes”, Ann. Math. Statist., 39 (1968), 1818–1824 ; 40 (1969), 1855 | DOI | MR | DOI | Zbl
[7] Chung K. L., “On the maximum partial sums of sequence of independent random variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl
[8] Cox D. D., “On the existence of natural rate of escape functions for infinite dimensional Brownian motions”, Ann. Probab., 10 (1982), 623–638 | DOI | MR | Zbl
[9] Csáki E., “An integral test for the supremum of Wiener local time”, Probab. Theory Related Fields, 83:1 (1989), 207–217 | DOI | MR | Zbl
[10] Dvoretzky A., Erdős P., “Some problems on random walk in space”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. of California Press, Berkeley, 1951, 353–367 | MR
[11] Erdős P., “On the law of the iterated logarithm”, Ann. Math., 43 (1942), 419–436 | DOI | MR | Zbl
[12] Erickson K. B., “Rates of escape of infinite dimensional Brownian motion”, Ann. Probab., 8 (1980), 325–338 | DOI | MR | Zbl
[13] Khoshnevisan D., Multiparameter Processes: An Introduction to Random Fields, Springer-Verlag, New York, 2002 | MR
[14] Kochen S. B., Stone C. J., “A note on the Borel–Cantelli lemma”, Illinois J. Math., 8 (1964), 248–251 | MR | Zbl
[15] Kolmogorov A. N., “Sulla determinazione empirica di una legge di distribuzione”, Giorn. Ist. Ital. Attuari, 4 (1933), 83–91 ; Kolmogorov A. N., “Ob empiricheskom opredelenii zakona raspredeleniya”, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986, 134–141 | Zbl | MR
[16] Komlós J., Major P., Tusnády G., “An approximation of partial sums of independent RV's and the sample DF. II”, Z. Wahrscheinlichkeitstheor. verw. Geb., 34 (1976), 33–58 | DOI | MR | Zbl
[17] Kuelbs J., “Rates of growth for Banach space valued independent increment processes”, Lecture Notes in Math., 709, 1979, 151–169 | MR | Zbl
[18] Shorack G. R., Wellner J. A., Empirical Processes with Applications to Statistics, Wiley, New York, 1986, 938 pp. | MR