Estimation of multivariate regression
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 301-320
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(X,Y)$ be a random vector whose first component takes on
values in a measurable space $(\mathfrak{X},\mathfrak{A},\mu)$ with measure $\mu$
and $Y$ be a real-valued random variable. Let
$$
f(x)=E\{Y\mid X=x\}
$$
be the regression function of $Y$ on $X$. We consider the
problem of estimating  $f(x)$ by observations of $n$ independent
copies of $(X,Y)$ given $f\inF$, where $F$ is an a priori known
set with specified metric characteristics such as
$\varepsilon$-entropy or Kolmogorov widths.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
additive regression, nonparametric estimation, regression function.
Mots-clés : regression
                    
                  
                
                
                Mots-clés : regression
@article{TVP_2003_48_2_a4,
     author = {I. A. Ibragimov},
     title = {Estimation of multivariate regression},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {301--320},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/}
}
                      
                      
                    I. A. Ibragimov. Estimation of multivariate regression. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 301-320. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/
