Estimation of multivariate regression
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 301-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,Y)$ be a random vector whose first component takes on values in a measurable space $(\mathfrak{X},\mathfrak{A},\mu)$ with measure $\mu$ and $Y$ be a real-valued random variable. Let $$ f(x)=E\{Y\mid X=x\} $$ be the regression function of $Y$ on $X$. We consider the problem of estimating $f(x)$ by observations of $n$ independent copies of $(X,Y)$ given $f\inF$, where $F$ is an a priori known set with specified metric characteristics such as $\varepsilon$-entropy or Kolmogorov widths.
Keywords: additive regression, nonparametric estimation, regression function.
Mots-clés : regression
@article{TVP_2003_48_2_a4,
     author = {I. A. Ibragimov},
     title = {Estimation of multivariate regression},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {301--320},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - Estimation of multivariate regression
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 301
EP  - 320
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/
LA  - ru
ID  - TVP_2003_48_2_a4
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T Estimation of multivariate regression
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 301-320
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/
%G ru
%F TVP_2003_48_2_a4
I. A. Ibragimov. Estimation of multivariate regression. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 301-320. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/