Estimation of multivariate regression
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 301-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(X,Y)$ be a random vector whose first component takes on values in a measurable space $(\mathfrak{X},\mathfrak{A},\mu)$ with measure $\mu$ and $Y$ be a real-valued random variable. Let $$ f(x)=E\{Y\mid X=x\} $$ be the regression function of $Y$ on $X$. We consider the problem of estimating $f(x)$ by observations of $n$ independent copies of $(X,Y)$ given $f\inF$, where $F$ is an a priori known set with specified metric characteristics such as $\varepsilon$-entropy or Kolmogorov widths.
Keywords: additive regression, nonparametric estimation, regression function.
Mots-clés : regression
@article{TVP_2003_48_2_a4,
     author = {I. A. Ibragimov},
     title = {Estimation of multivariate regression},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {301--320},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - Estimation of multivariate regression
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 301
EP  - 320
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/
LA  - ru
ID  - TVP_2003_48_2_a4
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T Estimation of multivariate regression
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 301-320
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/
%G ru
%F TVP_2003_48_2_a4
I. A. Ibragimov. Estimation of multivariate regression. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 301-320. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a4/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 407 pp. | MR

[2] Babenko K. I. (red.), Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, Nauka, M., 1979, 295 pp. | MR

[3] Horowitz J. L., Semiparametric Methods in Econometrics, Lecture Notes in Statist., 131, Springer-Verlag, Berlin, 1998, 204 pp. | MR | Zbl

[4] Zigmund A., Trigonometricheskie ryady, v. I, Mir, M., 1965, 615 pp. | MR

[5] Ibragimov I. A., “Ob odnoi zadache otsenivaniya funktsii regressii”, Dokl. RAN, 381:6 (2001), 738–741 | MR

[6] Ibragimov I. A., Khasminskii R. Z., “Neparametricheskie otsenki regressii”, Dokl. AN SSSR, 252:4 (1980), 780–784 | MR | Zbl

[7] Ibragimov I. A., Khasminskii R. Z., “O granitsakh kachestva neparametricheskogo otsenivaniya regressii”, Teoriya veroyatn. i ee primen., 27:1 (1982), 81–94 | MR | Zbl

[8] Ibragimov I. A., Khasminskii R. Z., “Asimptoticheskie granitsy kachestva neparametricheskogo otsenivaniya regressii v $L_p$”, Zap. nauchn. seminarov LOMI, 97, 1980, 88–101 | MR | Zbl

[9] Ibragimov I., Khasminskii R., “On density estimation in the view of Kolmogorov's ideas in approximation theory”, Ann. Statist., 18:3 (1990), 999–1010 | DOI | MR | Zbl

[10] Kolmogoroff A., “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse”, Ann. Math., 37 (1936), 107–110 ; Kolmogorov A. N., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 186–189 | DOI | MR | MR

[11] Kolmogorov A. N., “O nekotorykh asimptoticheskikh kharakteristikakh vpolne ogranichennykh metricheskikh prostranstv”, Dokl. AN SSSR, 108:3 (1956), 385–388 | MR | Zbl

[12] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 ; Колмогоров А. Н., Теория информации и теория алгоритмов, Наука, М., 1987, 119–192 | MR | MR

[13] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969, 480 pp. | MR

[14] Stone Ch., “Optimal global rates of convergence for nonparametric regression”, Ann. Statist., 10:4 (1982), 1040–1053 | DOI | MR | Zbl

[15] Stone Ch., “Additive regression and other nonparametric models”, Ann. Statist., 13:2 (1985), 689–705 | DOI | MR | Zbl

[16] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976, 304 pp. | MR

[17] Tikhomirov V. M., “Teoriya priblizheniya”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR

[18] Chentsov N. N., “Otsenka neizvestnoi plotnosti raspredeleniya po nablyudeniyam”, Dokl. AN SSSR, 147:1 (1962), 45–48 | MR | Zbl