Galton–Watson branching processes in a random environment. I: limit theorems
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 274-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $Z_n$ be the number of individuals at time $n$ in a branching process in a random environment generated by independent identically distributed random probability generating functions $f_0(s),f_1(s),\dots,f_n(s),\dots$ . Let $$ X_i=\log f_{i-1}'(1),\qquad i=0,1,2,\dots; \qquad S_0=0,\quad S_n=X_1+\dots+X_n,\qquad n\ge 1. $$ It is shown that if $Z_n$ is, in a sense, “critical,” then there exists a limit in distribution $$ \lim_{n\to\infty}\exp\Bigl\{-\min_{0\le j\le n}S_j\Bigr\}\,\mathbf{P}\{Z_n>0\mid f_0,\dots,f_{n-1}\}=\zeta, $$ where $\zeta$ is a proper random variable positive with probability 1. In addition, it is shown that for a “typical” realization of the environment the number of individuals $Z_n$ given $\{Z_n>0\}$ grows as $\exp\{S_n-\min_{0\le j\le n}S_j\}$ (up to a positive finite random multiplier).
Keywords: branching processes in random environment, survival probability, critical branching process, random walks, harmonic functions.
Mots-clés : stable distributions
@article{TVP_2003_48_2_a3,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Galton{\textendash}Watson branching processes in a random {environment.~I:} limit theorems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {274--300},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a3/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Galton–Watson branching processes in a random environment. I: limit theorems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 274
EP  - 300
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a3/
LA  - ru
ID  - TVP_2003_48_2_a3
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Galton–Watson branching processes in a random environment. I: limit theorems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 274-300
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a3/
%G ru
%F TVP_2003_48_2_a3
V. A. Vatutin; E. E. D'yakonova. Galton–Watson branching processes in a random environment. I: limit theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 274-300. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a3/

[1] Athreya K. B., Ney P., Branching Processes, Springer-Verlag, Berlin, 1972, 287 pp. | MR | Zbl

[2] Athreya K. B., Karlin S., “Branching processes with random environments, I: Extinction probabilities”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl

[3] Athreya K. B., Karlin S., “Branching processes with random environments, II: Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843–1858 | DOI | MR | Zbl

[4] Afanasev V. I., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 5:1 (1993), 45–58 | MR

[5] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 9:3 (1997), 52–67 | MR

[6] Afanasev V. I., “Funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 13:4 (2001), 73–91 | MR

[7] Doney R. A., “Spitzer's condition and ladder variables in random walks”, Probab. Theory Relat. Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl

[8] Bingham N. H., “Limit theorems in fluctuation theory”, Adv. Appl. Probab., 5:3 (1973), 554–569 | DOI | MR | Zbl

[9] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1989, 494 pp. | MR | Zbl

[10] Borovkov K. A., Vatutin V. A., “Reduced critical branching processes in random environment”, Stochastic Process. Appl., 71:2 (1997), 225–240 | DOI | MR | Zbl

[11] Bertoin J., Doney R. A., “Spitzer's condition for random walks and Lévy processes”, Ann. Inst. H. Poincaré, 33:2 (1997), 167–178 | DOI | MR | Zbl

[12] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[13] Geiger J., Kersting G., “The survival probability of a critical branching process in a random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl

[14] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[15] Hirano K., “Determination of the limiting coefficient for exponential functionals of random walks with positive drift”, J. Math. Sci. Univ. Tokyo, 5:2 (1998), 299–332 | MR | Zbl

[16] Iglehart D. L., “Random walks with negative drift conditioned to stay positive”, J. Appl. Probab., 11:4 (1974), 742–751 | DOI | MR | Zbl

[17] Fleischmann K., Vatutin V. A., “Reduced subcritical branching processes in random environment”, Adv. Appl. Probab., 31:1 (1999), 88–111 | DOI | MR | Zbl

[18] Kozlov M. V., “Ob asimptotike veroyatnosti vyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 21:4 (1976), 813–825 | MR | Zbl

[19] Kozlov M. V., “Uslovnaya funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Dokl. RAN, 344:1 (1995), 12–15 | MR | Zbl

[20] Rogozin B. A., “Raspredelenie pervogo lestnichnogo momenta i vysoty i fluktuatsii sluchainogo bluzhdaniya”, Teoriya veroyatn. i ee primen., 16:4 (1971), 593–613 | MR | Zbl

[21] Shiryaev A. N., Veroyatnost, Nauka, M., 1980, 576 pp. | MR | Zbl

[22] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.

[23] Stone C., “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36:2 (1965), 546–551 | DOI | MR | Zbl

[24] Tanny D., “Limit theorems for branching processes in a random environment”, Ann. Probab., 5:1 (1977), 100–116 | DOI | MR | Zbl

[25] Vatutin V. A., “Redutsirovannye vetvyaschiesya protsessy v sluchainoi srede”, Teoriya veroyatn. i ee. primen., 47:1 (2002), 21–38 | MR | Zbl

[26] Vatutin V. A., Dyakonova E. E., “Kriticheskie vetvyaschiesya protsessy v sluchainoi srede: veroyatnost vyrozhdeniya v fiksirovannyi moment”, Diskretn. matem., 9:4 (1997), 100–126 | MR | Zbl

[27] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science, v. II, Algorithms, Trees, Combinatorics and Probabilities, eds. B. Chauvin et al., Birkhäuser, Basel, 2002, 455–467 | MR | Zbl

[28] Vatutin V. A., Zubkov A. M., “Branching Processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl