Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 254-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X(n)=X(u,n)$, $n=0,1,\ldots\,$, be a time homogeneous ergodic real-valued Markov chain with transition probability $P(u,B)$ and initial value $u\equiv X(u,0)=X(0)$. We study the asymptotic behavior of the crossing probability of a given boundary $g(k)$, $k=0,1,\ldots,n$, by a trajectory $X(k)$, $k=0,1,\ldots,n$, that is the probability $$ P\Big\{\max_{k\le n}\big(X(k)-g(k)\big)>0\Big\}, $$ where the boundary $g(\cdot)$ depends, generally speaking, on $n$ and on a growing parameter $x$ in such a way that $\min_{k\le n}g(k)\to\infty$ as $x\to\infty$. The chain is assumed to be partially space-homogeneous, that is there exists $N\ge 0$ such that for $u>N$, $v>N$ the probability $P(u,dv)$ depends only on the difference $v-u$. In addition, it is assumed that there exists $\lambda>0$ such that $$ \sup_{u\le 0}E e^{(u+\xi(u))\lambda}<\infty,\qquad \sup_{u\ge 0}E e^{\lambda\xi(u)}<\infty, $$ where $\xi(u)=X(u,1)-u$ is the increments of the chain at point $u$ in one step. The present paper is a continuation of article [A. A. Borovkov, Theory Probab. Appl., 47 (2002), pp. 584–608], in which it is assumed that the tails of the distributions of $\xi(u)$ are regularly varying. Here we establish limit theorems describing under rather broad conditions the asymptotic behavior of the probabilities in question in the domains of large and normal deviations. Besides, asymptotic properties of the regeneration cycles to a positive atom are considered and an analog of the law of iterated logarithm is established.
Mots-clés : Markov chains
Keywords: large deviations, boundary crossing, exponentially decaying tails, the law of iterated logarithm.
@article{TVP_2003_48_2_a2,
     author = {A. A. Borovkov},
     title = {Asymptotics of crossing probability of a boundary by the trajectory of a {Markov} chain. {Exponentially} decaying tails},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {254--273},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 254
EP  - 273
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/
LA  - ru
ID  - TVP_2003_48_2_a2
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 254-273
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/
%G ru
%F TVP_2003_48_2_a2
A. A. Borovkov. Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 254-273. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/

[1] Borovkov A. A., “Asimptotika veroyatnosti peresecheniya granitsy traektoriei tsepi Markova. Regulyarnye khvosty skachkov”, Teoriya veroyatn. i ee primen., 47:4 (2002), 625–653 | MR

[2] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Ch. 1. Statsionarnye raspredeleniya”, Teoriya veroyatn. i ee primen., 41:1 (1996), 3–30 | MR | Zbl

[3] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Ch. 2. Dostatsionarnye raspredeleniya v eksponentsialnom sluchae”, Teoriya veroyatn. i ee primen., 45:3 (2000), 437–468 | MR | Zbl

[4] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Ch. 3. Dostatsionarnye raspredeleniya v subeksponentsialnom sluchae”, Teoriya veroyatn. i ee primen., 46:4 (2001), 640–657 | MR | Zbl

[5] Iglehart D. L., “Extreme values in the GI/G/1 queue”, Ann. Math. Statist., 43 (1972), 627–635 | DOI | MR | Zbl

[6] Asmussen S., “Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities”, Ann. Appl. Probab., 8:2 (1998), 354–374 | DOI | MR | Zbl

[7] Borovkov A. A., “O preobrazovanii Kramera, bolshikh ukloneniyakh v granichnykh zadachakh i uslovnom printsipe invariantnosti”, Sib. matem. zhurn., 36:3 (1995), 493–509 | MR | Zbl

[8] Borovkov A. A., “Ob uslovnykh raspredeleniyakh, svyazannykh s bolshimi ukloneniyami”, Sib. matem. zhurn., 37:4 (1996), 732–744 | MR | Zbl

[9] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I”, Teoriya veroyatn. i ee primen., 43:1 (1998), 3–17 | MR | Zbl

[10] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. II”, Teoriya veroyatn. i ee primen., 45:1 (2000), 5–29 | MR | Zbl

[11] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS/Izd-vo IM SO RAN, M., Novosibirsk, 1999, 450 pp. | MR

[12] Borovkov A. A., Utev S. A., “Otsenki dlya raspredelenii summ, ostanovlennykh v markovskii moment vremeni”, Teoriya veroyatn. i ee primen., 38:2 (1993), 259–272 | MR | Zbl

[13] Borovkov A. A., Mogulskii A. A., “Bolshie ukloneniya dlya tsepei Markova v polozhitelnom kvadrante”, Uspekhi matem. nauk, 56:5 (2001), 3–116 | MR | Zbl

[14] Nummelin E., Obschie neprivodimye tsepi Markova i neotritsatelnye operatory, Mir, M., 1989, 207 pp. | MR

[15] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993, 548 pp. | MR | Zbl

[16] Rootzén H., “Maxima and exceedances of stationary Markov chains”, Adv. Appl. Probab., 20:2 (1988), 371–390 | DOI | MR | Zbl