Keywords: large deviations, boundary crossing, exponentially decaying tails, the law of iterated logarithm.
@article{TVP_2003_48_2_a2,
author = {A. A. Borovkov},
title = {Asymptotics of crossing probability of a boundary by the trajectory of a {Markov} chain. {Exponentially} decaying tails},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {254--273},
year = {2003},
volume = {48},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/}
}
TY - JOUR AU - A. A. Borovkov TI - Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2003 SP - 254 EP - 273 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/ LA - ru ID - TVP_2003_48_2_a2 ER -
%0 Journal Article %A A. A. Borovkov %T Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails %J Teoriâ veroâtnostej i ee primeneniâ %D 2003 %P 254-273 %V 48 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/ %G ru %F TVP_2003_48_2_a2
A. A. Borovkov. Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 254-273. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/
[1] Borovkov A. A., “Asimptotika veroyatnosti peresecheniya granitsy traektoriei tsepi Markova. Regulyarnye khvosty skachkov”, Teoriya veroyatn. i ee primen., 47:4 (2002), 625–653 | MR
[2] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Ch. 1. Statsionarnye raspredeleniya”, Teoriya veroyatn. i ee primen., 41:1 (1996), 3–30 | MR | Zbl
[3] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Ch. 2. Dostatsionarnye raspredeleniya v eksponentsialnom sluchae”, Teoriya veroyatn. i ee primen., 45:3 (2000), 437–468 | MR | Zbl
[4] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Ch. 3. Dostatsionarnye raspredeleniya v subeksponentsialnom sluchae”, Teoriya veroyatn. i ee primen., 46:4 (2001), 640–657 | MR | Zbl
[5] Iglehart D. L., “Extreme values in the GI/G/1 queue”, Ann. Math. Statist., 43 (1972), 627–635 | DOI | MR | Zbl
[6] Asmussen S., “Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities”, Ann. Appl. Probab., 8:2 (1998), 354–374 | DOI | MR | Zbl
[7] Borovkov A. A., “O preobrazovanii Kramera, bolshikh ukloneniyakh v granichnykh zadachakh i uslovnom printsipe invariantnosti”, Sib. matem. zhurn., 36:3 (1995), 493–509 | MR | Zbl
[8] Borovkov A. A., “Ob uslovnykh raspredeleniyakh, svyazannykh s bolshimi ukloneniyami”, Sib. matem. zhurn., 37:4 (1996), 732–744 | MR | Zbl
[9] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I”, Teoriya veroyatn. i ee primen., 43:1 (1998), 3–17 | MR | Zbl
[10] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. II”, Teoriya veroyatn. i ee primen., 45:1 (2000), 5–29 | MR | Zbl
[11] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS/Izd-vo IM SO RAN, M., Novosibirsk, 1999, 450 pp. | MR
[12] Borovkov A. A., Utev S. A., “Otsenki dlya raspredelenii summ, ostanovlennykh v markovskii moment vremeni”, Teoriya veroyatn. i ee primen., 38:2 (1993), 259–272 | MR | Zbl
[13] Borovkov A. A., Mogulskii A. A., “Bolshie ukloneniya dlya tsepei Markova v polozhitelnom kvadrante”, Uspekhi matem. nauk, 56:5 (2001), 3–116 | MR | Zbl
[14] Nummelin E., Obschie neprivodimye tsepi Markova i neotritsatelnye operatory, Mir, M., 1989, 207 pp. | MR
[15] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993, 548 pp. | MR | Zbl
[16] Rootzén H., “Maxima and exceedances of stationary Markov chains”, Adv. Appl. Probab., 20:2 (1988), 371–390 | DOI | MR | Zbl