Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 254-273
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X(n)=X(u,n)$, $n=0,1,\ldots\,$, be a time homogeneous ergodic
real-valued Markov chain with transition probability $P(u,B)$ and
initial value $u\equiv X(u,0)=X(0)$. We study the asymptotic
behavior of the crossing probability  of a given boundary $g(k)$,
$k=0,1,\ldots,n$, by a trajectory $X(k)$, $k=0,1,\ldots,n$, that is
the probability
$$
P\Big\{\max_{k\le n}\big(X(k)-g(k)\big)>0\Big\},
$$
where the boundary $g(\cdot)$ depends, generally speaking, on $n$
and on a growing parameter $x$ in such a way that
$\min_{k\le n}g(k)\to\infty$ as $x\to\infty$.
The chain is assumed to be partially space-homogeneous, that is
there exists $N\ge 0$ such that for $u>N$, $v>N$ the probability
$P(u,dv)$ depends only on the difference $v-u$.
In addition, it is assumed that there exists $\lambda>0$ such that
$$
\sup_{u\le 0}E e^{(u+\xi(u))\lambda}\infty,\qquad
\sup_{u\ge 0}E e^{\lambda\xi(u)}\infty,
$$
where $\xi(u)=X(u,1)-u$ is the increments of the chain at point $u$ in one step.
The present paper is a continuation of article
[A. A. Borovkov, Theory Probab. Appl.,
47 (2002), pp. 584–608], in which
it is assumed that the tails of the distributions of $\xi(u)$ are regularly varying.
Here we establish limit theorems describing under rather broad conditions
 the asymptotic behavior
of the probabilities in question in the domains of large and normal deviations.
Besides, asymptotic properties of the
regeneration cycles to a positive atom are considered and an analog of the law of iterated logarithm
is established.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Markov chains
Keywords: large deviations, boundary crossing, exponentially decaying tails, the law of iterated logarithm.
                    
                  
                
                
                Keywords: large deviations, boundary crossing, exponentially decaying tails, the law of iterated logarithm.
@article{TVP_2003_48_2_a2,
     author = {A. A. Borovkov},
     title = {Asymptotics of crossing probability of a boundary by the trajectory of a {Markov} chain. {Exponentially} decaying tails},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {254--273},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/}
}
                      
                      
                    TY - JOUR AU - A. A. Borovkov TI - Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2003 SP - 254 EP - 273 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/ LA - ru ID - TVP_2003_48_2_a2 ER -
%0 Journal Article %A A. A. Borovkov %T Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails %J Teoriâ veroâtnostej i ee primeneniâ %D 2003 %P 254-273 %V 48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/ %G ru %F TVP_2003_48_2_a2
A. A. Borovkov. Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 254-273. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a2/
