Separating times for measures on filtered spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 416-427 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of a separating time for a pair of measures $P$ and $\widetilde{P}$ on a filtered space. This notion is convenient for describing the mutual arrangement of $P$ and $\widetilde{P}$ from the viewpoint of the absolute continuity and singularity. Furthermore, we find the explicit form of the separating time for the case, where $P$ and $\widetilde{P}$ are distributions of Lévy processes, solutions of stochastic differential equations, and distributions of Bessel processes. The obtained results yield, in particular, the criteria for the local absolute continuity, absolute continuity, and singularity of $P$ and $\widetilde{P}$.
Keywords: separating time, local absolute continuity, absolute continuity, singularity, stochastic differential equations, Bessel processes.
Mots-clés : Lévy processes
@article{TVP_2003_48_2_a14,
     author = {M. A. Urusov and A. S. Cherny},
     title = {Separating times for measures on filtered spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {416--427},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a14/}
}
TY  - JOUR
AU  - M. A. Urusov
AU  - A. S. Cherny
TI  - Separating times for measures on filtered spaces
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 416
EP  - 427
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a14/
LA  - ru
ID  - TVP_2003_48_2_a14
ER  - 
%0 Journal Article
%A M. A. Urusov
%A A. S. Cherny
%T Separating times for measures on filtered spaces
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 416-427
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a14/
%G ru
%F TVP_2003_48_2_a14
M. A. Urusov; A. S. Cherny. Separating times for measures on filtered spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 416-427. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a14/

[1] Bertoin J., Lévy Processes, Cambridge Univ. Press, Cambridge, 1996, 265 pp. | MR

[2] Chernyi A. S., “Skhodimost nekotorykh integralov, svyazannykh s protsessami Besselya”, Teoriya veroyatn. i ee primen., 45:2 (2000), 251–267 | MR

[3] Cherny A. S., “On the strong and weak solutions of stochastic differential equations governing Bessel processes”, Stochastics Stochastics Rep., 70:3–4 (2000), 213–219 | MR | Zbl

[4] Cherny A. S., Engelbert H.-J., Singular stochastic differential equations, Preprint, 2003 | MR

[5] Dubins L. E., Shepp L. A., Shiryaev A. N., “Optimalnye pravila ostanovki i maksimalnye neravenstva dlya protsessov Besselya”, Teoriya veroyatn. i ee primen., 38:2 (1993), 288–330 | MR | Zbl

[6] Engelbert H.-J., Schmidt W., “Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. I, II, III”, Math. Nachr., 143 (1989), 167–184 ; 144 (1989), 241–281 ; 151 (1991), 149–197 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[7] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, v. 1, 2, Fizmatlit, M., 1994, 544 pp. ; 368 с. | MR

[8] Kunita H., “Absolute continuity of Markov processes”, Lecture Notes in Math., 511, 1976, 44–77 | MR | Zbl

[9] Kunita H., Watanabe S., “On square integrable martingales”, Nagoya Math. J., 30 (1967), 209–245 | MR | Zbl

[10] Newman C. M., “The inner product of path space measures corresponding to random processes with independent increments”, Bull. Amer. Math. Soc., 78 (1972), 268–271 | DOI | MR | Zbl

[11] Newman C. M., “On the orthogonality of independent increment processes”, Topics in Probability Theory, eds. D. W. Stroock and S. R. S. Varadhan, Courant Inst. Math. Sci., New York Univ., New York, 1973, 93–111 | MR | Zbl

[12] Pitman J. W., Yor M., “Bessel processes and infinitely divisible laws”, Lecture Notes in Math., 851, 1981, 285–370 | MR | Zbl

[13] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1994, 560 pp. | MR | Zbl

[14] Sato K.-I, Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[15] Sato K.-I., Density transformation in Lévy processes, Lecture Notes Ser., 7, Centre for Mathematical Physics and Stochastics, University of Aarhus, Aarhus, 2000

[16] Skorokhod A. V., “O differentsiruemosti mer, sootvetstvuyuschikh sluchainym protsessam. I. Protsessy s nezavisimymi prirascheniyami”, Teoriya veroyatn. i ee primen., 2:4 (1957), 417–443 | MR

[17] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, Kiev, 1961, 216 pp.

[18] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, 2, Fazis, M., 1998, 544 pp.; 512 с.