Separating times for measures on filtered spaces
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 416-427
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We introduce the notion of a separating time for a pair of measures $P$ and $\widetilde{P}$ on a filtered space. This notion is convenient for describing the mutual arrangement of $P$ and $\widetilde{P}$ from the viewpoint of the absolute continuity and singularity.
Furthermore, we find the explicit form of the separating time for the case, where $P$ and $\widetilde{P}$ are distributions of Lévy processes, solutions of stochastic differential equations, and distributions of Bessel processes. The obtained results yield, in particular, the criteria for the local absolute continuity, absolute continuity, and singularity of $P$ and $\widetilde{P}$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
separating time, local absolute continuity, absolute continuity, singularity, Lévy processes, stochastic differential equations, Bessel processes.
                    
                  
                
                
                @article{TVP_2003_48_2_a14,
     author = {M. A. Urusov and A. S. Cherny},
     title = {Separating times for measures on filtered spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {416--427},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a14/}
}
                      
                      
                    M. A. Urusov; A. S. Cherny. Separating times for measures on filtered spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 416-427. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a14/
