One Probabilistic equivalent of the four color conjecture
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 411-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For every two-connected planar three-valent graph we introduce in a natural way a probabilistic space and define two random events. The four color conjecture turns out to be equivalent to (a positive) correlation of these events.
Mots-clés : four color conjecture.
@article{TVP_2003_48_2_a13,
     author = {Yu. V. Matiyasevich},
     title = {One {Probabilistic} equivalent of the four color conjecture},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {411--416},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a13/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - One Probabilistic equivalent of the four color conjecture
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 411
EP  - 416
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a13/
LA  - ru
ID  - TVP_2003_48_2_a13
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T One Probabilistic equivalent of the four color conjecture
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 411-416
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a13/
%G ru
%F TVP_2003_48_2_a13
Yu. V. Matiyasevich. One Probabilistic equivalent of the four color conjecture. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 411-416. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a13/

[1] Alon N., Tarsi M., “A note on graph colorings and graph polynomials”, J. Combin. Theory, Ser. B, 70:1 (1997), 197–201 | DOI | MR | Zbl

[2] Appel K., Haken W., “Every planar map is four colorable”, Bull. Amer. Math. Soc., 82 (1976), 711–712 | DOI | MR | Zbl

[3] Appel K., Haken W., “Every planar map is four colorable. Part I: Discharging”, Illinois J. Math., 21 (1977), 429–490 | MR | Zbl

[4] Appel K., Haken W., Koch J., “Every planar map is four colorable. Part II: Reducibility”, Illinois J. Math., 21 (1977), 491–567 | MR | Zbl

[5] Appel K., Haken W., Every Planar Map is Four Colorable, Amer. Math. Soc., Providence, R.I., 1989, 741 pp. | MR | Zbl

[6] Colin de Verdiere Y., “On a new graph invariant and a criterion for planarity”, Contemp. Math., 147, 1993, 137–147 | MR | Zbl

[7] Hoffman T., Mitchem J., Schmeichel E., “On edge-coloring graphs”, Ars Combin., 33 (1992), 119–128 | MR | Zbl

[8] Hudry O., “Le problème des quatre couleurs”, La recherche de la vérité, eds. M. Serfati, Kangourou, Paris, 1999, 211–240 | MR | Zbl

[9] Jensen T. R., Toft B., Graph Coloring Problems, Wiley, New York, 1995, 295 pp. | MR

[10] Kainen P. C., “Is the four color theorem true?”, Geombinatorics, 3:2 (1993), 41–56 | MR | Zbl

[11] Kauffman L. H., “Map coloring and the vector cross product”, J. Combin. Theory, Ser. B, 48:2 (1990), 145–154 | DOI | MR | Zbl

[12] Kauffman L. H., “Combinatorial recoupling theory and 3-manifold invariants”, NATO Adv. Sci. Inst., Ser. B Phys., 315, 1993, 1–17 | MR | Zbl

[13] Kauffman L. H, “Spin networks, topology and discrete physics”, Adv. Ser. Math. Phys., 17, 1994, 234–274 | MR | Zbl

[14] Kauffman L. H., Saleur H., “An algebraic approach to the planar coloring problem”, Comm. Math. Phys., 152:3 (1993), 565–590 | DOI | MR | Zbl

[15] Kempe A. B., “On the geographical problem of the four colors”, Amer. J. Math., 2 (1879), 193–201 | DOI | MR

[16] Matiyasevich Yu., “Some arithmetical restatements of the four color conjecture”, Theoret. Comput. Sci., 257:1–2 (2001), 167–183 ; mirrored at http://logic.pdmi.ras.ru/~yumat/Journal/jcontord.htmhttp://www. informatik.uni-stuttgart.de/ifi/ti/personen/Matiyasevich/ | DOI | MR | Zbl

[17] Matiyasevich Yu. V., “Nekotorye algebraicheskie metody vychisleniya kolichestva raskrasok grafov”, Zap. nauch. seminarov POMI, 283, 2001, 193–205 http://www.pdmi.ras.ru/znsl/2001/v283.html | MR | Zbl

[18] May K. O., “The origin of the four-color conjecture”, Isis, 56 (1965), 346–348 | DOI

[19] Ore Ø., The Four-Color Problem, Academic Press, New York, London, 1967, 259 pp. | MR | Zbl

[20] Robertson N., Sanders D., Seymour P., Thomas R., “The four-colour theorem”, J. Combin. Theory, Ser. B, 70:1 (1997), 2–44 | DOI | MR | Zbl

[21] Thomas R., “An update on the four-colour theorem”, Notices Amer. Math. Soc., 45:7 (1998), 848–859 http://www.ams.org/notices/199807/thomas.ps | MR | Zbl

[22] Saaty T. L., “Thirteen colorful variations on Guthrie's four-color conjecture”, Amer. Math. Monthly, 79 (1972), 2–43 | DOI | MR | Zbl

[23] Saaty T. L., Kainen P. C, The Four-Color Problem. Assaults and Conquest, McGraw-Hill, Düsseldorf etc., 1977, 217 pp. | MR | Zbl