Integral Equations and Phase Transitions in Stochastic Games. An Analogy with Statistical Physics
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 403-411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Maximization of the Kullback–Leibler information is known to result in general Esscher transformations. The Bose–Einstein and Fermi–Dirac statistics in a probability space $(\Omega, \mathcal{F},P)$ give rise to another kind of information, namely, $$ S_B=\int \log\bigg(1+\frac{dP}{dQ}\bigg)\,dQ+ \int \log\bigg(1+\frac{dQ}{dP}\bigg)\,dP $$ for the Bose statistics and $$ S_F =\int\log\bigg(\frac{dP}{dQ}-1\bigg)\,dQ -\int\log\bigg(1-\frac{dQ}{dP}\bigg)\,dP, \qquad \frac{dP}{dQ} >1, $$ for the Fermi statistics. This information generates measure transformations corresponding to these statistics. In the presence of a payoff matrix, these transformations vary in accordance with the integral equations given in the paper. We give examples of financial games corresponding to Bose and Fermi statistics.
Keywords: Bose statistics, Fermi statistics, payoff matrix, entropy, integral equation, Kullback–Leibler information, thermodynamics, statistical physics, dyadic games.
Mots-clés : Esscher transformation, phase transition
@article{TVP_2003_48_2_a12,
     author = {V. P. Maslov},
     title = {Integral {Equations} and {Phase} {Transitions} in {Stochastic} {Games.} {An} {Analogy} with {Statistical} {Physics}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {403--411},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a12/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Integral Equations and Phase Transitions in Stochastic Games. An Analogy with Statistical Physics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 403
EP  - 411
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a12/
LA  - ru
ID  - TVP_2003_48_2_a12
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Integral Equations and Phase Transitions in Stochastic Games. An Analogy with Statistical Physics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 403-411
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a12/
%G ru
%F TVP_2003_48_2_a12
V. P. Maslov. Integral Equations and Phase Transitions in Stochastic Games. An Analogy with Statistical Physics. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 403-411. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a12/

[1] Bucklew J., Large Deviation Technique in Decision, Simulation, and Estimation, Wiley, New York, 1990, 270 pp. | MR

[2] Cover T. M., Thomas J. A., Elements of Information Theory, Wiley, New York, 1991, 542 pp. | MR

[3] Csiszar I., “$I$-divergence geometry of probability distributions and minimization problems”, Ann. Probab., 3:1 (1975), 146–158 | DOI | MR | Zbl

[4] Föllmer H.,Schied A., Stochastic Finance. An Introduction in Discrete Time, de Gruyter, Berlin, 2002, 422 pp. | MR | Zbl

[5] Frittelli M., “The minimal entropy martingale measure and the valuation problem in incomplete markets”, Math. Finance, 10:1 (2000), 39–52 | DOI | MR | Zbl

[6] Maslov V. P., Kvantovanie termodinamiki i ultravtorichnoe kvantovanie, Institut kompyuternykh issledovanii, M., 2001, 384 pp.

[7] Maslov V. P., “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields. I–XII”, Russian J. Math. Phys., 2 (1994), 527–534 ; 3 (1995), 123–132 ; 271–276 ; 401–406 ; 529–534; 4 (1996), 117–122 ; 265–270 ; 539–546 ; 5 (1997/98), 123–130 ; 273–278 ; 405–412 ; 529–534 | MR | Zbl | MR | Zbl | Zbl | Zbl | MR | Zbl | Zbl | Zbl | MR | Zbl | Zbl | Zbl

[8] Maslov V. P., “Metody kvantovoi statistiki s tochki zreniya teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 47:4 (2002), 686–709

[9] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, FAZIS, M., 1998, 544 pp.

[10] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR

[11] Maslov V. P., “Ekonofizika i kvantovaya statistika”, Matem. zametki, 72:6 (2002), 883–891 | MR | Zbl

[12] Landau L. D., Livshits E. M., Statisticheskaya fizika, Nauka, M., 1964 | Zbl

[13] Maslov V. P., “On a new class of integral equations with jumping nonlinearity”, Math. Res., 82 (1994), 217–225 | MR | Zbl

[14] Ashkroft N., Mermin N., Fizika tverdogo tela, v. 1, Mir, M., 1979

[15] Maslov V. P., “Teorema o klassicheskom predele $\hbar\to0$ dlya $N$ vzaimodeistvuyuschikh fermionov”, Matem. zametki, 63:1 (1998), 145–146 | MR | Zbl

[16] Maslov V. P., “O fazovom perekhode dlya klassicheskikh fermionov”, Matem. zametki, 63:4 (1998), 635–637 | MR | Zbl

[17] Maslov V. P., “O fazovom pepekhode dlya klassicheskikh bozonov, fepmionov i obychnykh klassicheskikh chastits”, Matem. zametki, 63:5 (1998), 792–795 | MR | Zbl

[18] Maslov V. P., “O fazovom perekhode dlya klassicheskikh fermionov”, Matem. zametki, 64:3 (1998), 470–473 | MR | Zbl

[19] Blume L. E., “The statistical mechanics of strategic interaction”, Games and Economic Behavior, 5:3 (1993), 387–424 | DOI | MR | Zbl

[20] Maslov V. P., “Dvukhurovnevaya model slabo neidealnogo boze-gaza. Fazovyi perekhod v metastabilnom (sverkhtekuchem) sostoyanii”, Dokl. RAN, 389:4 (2003), 1–2 | MR

[21] Maslov V. P., “Model slabo neidealnogo boze-gaza. Fazovyi perekhod v sverkhtekuchem sostoyanii i effekt fontanirovaniya”, Vestnik MGU, ser. fiz., astron., 2003, no. 1, 3–11

[22] Keezom V., Gelii, M., 1949

[23] Fizika nizkikh temperatur, IL, M., 1959