Normal and Poisson convergencies
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 392-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper provides necessary and sufficient conditions for weak convergence of the distributions of sums of independent random variables to normal and Poisson distributions. The conditions are given in terms of the first through fourth moments of the truncated components and some condition guaranteeing the asymptotic equality between the distribution of the sums mentioned above and the distribution of the sums of the truncated components. The theorems proven in this work are similar to the well-known criteria for normal and Poisson convergencies.
Mots-clés : normal convergence, Poisson convergence, moments of random variables.
Keywords: Lindeberg–Feller central limit theorem, weak convergence
@article{TVP_2003_48_2_a10,
     author = {V. M. Kruglov},
     title = {Normal and {Poisson} convergencies},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {392--398},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a10/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - Normal and Poisson convergencies
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 392
EP  - 398
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a10/
LA  - ru
ID  - TVP_2003_48_2_a10
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T Normal and Poisson convergencies
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 392-398
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a10/
%G ru
%F TVP_2003_48_2_a10
V. M. Kruglov. Normal and Poisson convergencies. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 392-398. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a10/

[1] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, GITTL, M., 1949, 264 pp. | MR

[2] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.

[3] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 415 pp. | MR

[4] Zolotarev V. M., “Obobschenie teoremy Lindeberga–Fellera”, Teoriya veroyatn. i ee primen., 12:4 (1967), 666–677 | MR | Zbl