Normal and Poisson convergencies
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 392-398
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper provides necessary and sufficient conditions for weak convergence of the distributions of sums of independent random variables to normal and Poisson distributions. The conditions are given in terms of the first through fourth moments of the truncated components and some condition guaranteeing the asymptotic equality between the distribution of the sums mentioned above and the distribution of the sums of the truncated components. The theorems proven in this work are similar to the well-known criteria for normal and Poisson convergencies.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
normal convergence, Poisson convergence, moments of random variables.
Keywords: Lindeberg–Feller central limit theorem, weak convergence
                    
                  
                
                
                Keywords: Lindeberg–Feller central limit theorem, weak convergence
@article{TVP_2003_48_2_a10,
     author = {V. M. Kruglov},
     title = {Normal and {Poisson} convergencies},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {392--398},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a10/}
}
                      
                      
                    V. M. Kruglov. Normal and Poisson convergencies. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 392-398. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a10/
