@article{TVP_2003_48_1_a9,
author = {I. Fazekas and A. N. Chuprunov},
title = {Almost sure limit theorems for the {Pearson} statistic},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {162--169},
year = {2003},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a9/}
}
I. Fazekas; A. N. Chuprunov. Almost sure limit theorems for the Pearson statistic. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 162-169. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a9/
[1] Berkes I., “Results and problems related to the pointwise central limit theorem”, Asymptotic Methods in Probability and Statistics (Ottava, ON, 1997), ed. B. Szyszkowicz, Noth-Holland, Amsterdam, 1998, 59–96 | MR
[2] Dudley R. M., Real Analysis and Probability, Wadsworth Brooks/Cole, Pacific Grove, CA, 1989, 436 pp. | MR | Zbl
[3] Fazekas I., Klesov O., “A general approach to the strong laws of large numbers”, Teoriya veroyatn. i ee primen., 45:3 (2000), 568–583 | MR | Zbl
[4] Kruglov V. M., “Asimptoticheskoe povedenie statistiki Pirsona”, Teoriya veroyatn. i ee primen., 45:1 (2000), 73–102 | MR | Zbl
[5] Lacey M. T., Philipp W., “A note on the almost sure central limit theorem”, Statist. Probab. Lett., 9:3 (1990), 201–205 | DOI | MR | Zbl
[6] Longnecker M., Serfling R. J., “General moment and probability inequalities for the maximum partial sum”, Acta Math. Acad. Sci. Hungar., 30:1–2 (1977), 129–133 | DOI | MR | Zbl
[7] Tumanyan S. Kh., “Asimptoticheskoe raspredelenie kriteriya $\chi^2$ pri odnovremennom vozrastanii ob'ema nablyudenii i chisla grupp”, Teoriya veroyatn. i ee primen., 1:1 (1956), 131–145 | MR | Zbl