Limit theorem for one-dimensional stochastic equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 156-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One-dimensional stochastic equations are considered whose coefficients depend on a small parameter. Necessary and sufficient conditions are obtained for the weak convergence of their solutions to the solution of the stochastic equation containing local time of an unknown process.
Keywords: stochastic equations, local time, necessary conditions of convergence
Mots-clés : sufficient conditions of convergence.
@article{TVP_2003_48_1_a8,
     author = {S. Ya. Makhno},
     title = {Limit theorem for one-dimensional stochastic equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {156--161},
     year = {2003},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a8/}
}
TY  - JOUR
AU  - S. Ya. Makhno
TI  - Limit theorem for one-dimensional stochastic equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 156
EP  - 161
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a8/
LA  - ru
ID  - TVP_2003_48_1_a8
ER  - 
%0 Journal Article
%A S. Ya. Makhno
%T Limit theorem for one-dimensional stochastic equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 156-161
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a8/
%G ru
%F TVP_2003_48_1_a8
S. Ya. Makhno. Limit theorem for one-dimensional stochastic equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 156-161. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a8/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[2] Veretennikov A. Yu., “O silnykh resheniyakh stokhasticheskikh differentsialnykh uravnenii”, Teoriya veroyatn. i ee primen., 24:2 (1979), 348–360 | MR | Zbl

[3] Engelbert H. J., Schmidt W., “Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. III”, Math. Nachr., 151 (1991), 149–197 | DOI | MR | Zbl

[4] Le Gall J. F., “One-dimensional stochastic differential equations involving the local times of the unknown process”, Lecture Notes in Math., 1095, 1983, 51–82 | MR

[5] Makhno S. Ya., “Skhodimost reshenii odnomernykh stokhasticheskikh uravnenii”, Teoriya veroyatn. i ee primen., 44:3 (1999), 555–572 | MR | Zbl

[6] Portenko N. I., Obobschennye diffuzionnye protsessy, Naukova dumka, Kiev, 1982, 208 pp. | MR | Zbl

[7] Rosenkrantz W. A., “Limit theorems for solutions to a class of stochastic differential equations”, Indiana Univ. Math. J., 24:7 (1975), 613–624 | DOI | MR

[8] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, Heidelberg, 1991, 533 pp. | MR | Zbl