Mots-clés : sufficient conditions of convergence.
@article{TVP_2003_48_1_a8,
author = {S. Ya. Makhno},
title = {Limit theorem for one-dimensional stochastic equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {156--161},
year = {2003},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a8/}
}
S. Ya. Makhno. Limit theorem for one-dimensional stochastic equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 156-161. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a8/
[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR
[2] Veretennikov A. Yu., “O silnykh resheniyakh stokhasticheskikh differentsialnykh uravnenii”, Teoriya veroyatn. i ee primen., 24:2 (1979), 348–360 | MR | Zbl
[3] Engelbert H. J., Schmidt W., “Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. III”, Math. Nachr., 151 (1991), 149–197 | DOI | MR | Zbl
[4] Le Gall J. F., “One-dimensional stochastic differential equations involving the local times of the unknown process”, Lecture Notes in Math., 1095, 1983, 51–82 | MR
[5] Makhno S. Ya., “Skhodimost reshenii odnomernykh stokhasticheskikh uravnenii”, Teoriya veroyatn. i ee primen., 44:3 (1999), 555–572 | MR | Zbl
[6] Portenko N. I., Obobschennye diffuzionnye protsessy, Naukova dumka, Kiev, 1982, 208 pp. | MR | Zbl
[7] Rosenkrantz W. A., “Limit theorems for solutions to a class of stochastic differential equations”, Indiana Univ. Math. J., 24:7 (1975), 613–624 | DOI | MR
[8] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, Heidelberg, 1991, 533 pp. | MR | Zbl