Berry–Esseen inequalities for $U$-statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 151-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a Berry–Esseen boundary for nondegenerate $U$-statistics of power 2 constructed by independent and not necessarily identically distributed random variables assuming finiteness of the absolute third moments for the first family of the canonical functions and the absolute moments of order $\frac 53$ for the second family of the canonical functions in the Höeffding expansion.
Keywords: $U$-statistic, Berry–Esseen inequality, rate of convergence.
@article{TVP_2003_48_1_a7,
     author = {L. V. Gadasina},
     title = {Berry{\textendash}Esseen inequalities for $U$-statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {151--155},
     year = {2003},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a7/}
}
TY  - JOUR
AU  - L. V. Gadasina
TI  - Berry–Esseen inequalities for $U$-statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 151
EP  - 155
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a7/
LA  - ru
ID  - TVP_2003_48_1_a7
ER  - 
%0 Journal Article
%A L. V. Gadasina
%T Berry–Esseen inequalities for $U$-statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 151-155
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a7/
%G ru
%F TVP_2003_48_1_a7
L. V. Gadasina. Berry–Esseen inequalities for $U$-statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 151-155. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a7/

[1] Borovskikh Yu. V., “O normalnoi approksimatsii $U$-statistik”, Teoriya veroyatn. i ee primen., 45:3 (2000), 469–488 | MR | Zbl

[2] Korolyuk V. S., Borovskikh Yu. V., Teoriya $U$-statistik, Naukova dumka, Kiev, 1989, 384 pp. | MR | Zbl

[3] Malevich T. L., Abdurakhmanov G. R., “Tsentralnaya predelnaya teorema dlya obobschennykh (neodnorodnykh) $U$-statistik ot razlichno raspredelennykh sluchainykh velichin”, Izv. AN UzSSR, ser. fiz.-matem. nauk, 1986, no. 2, 28–33 | MR | Zbl

[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 738 pp.

[5] Khashimov Sh. A., Abdurakhmanov G. R., “Ob otsenke skorosti skhodimosti v tsentralnoi predelnoi teoreme dlya obobschennykh $U$-statistik”, Teoriya veroyatn. i ee primen., 43:1 (1998), 69–81 | MR | Zbl

[6] Alberink I. B., “A Berry–Esseen bound for $U$-statistics in non-i.i.d. case”, J. Theoret. Probab., 13:2 (2000), 519–533 | DOI | MR | Zbl

[7] Bentkus V., Götze F., Zitikis R., “Lower estimates of the convergence rate for $U$-statistics”, Ann. Probab., 22:4 (1994), 1707–1714 | DOI | MR | Zbl

[8] Friedrich K. O., “A Berry–Esseen bound for functions of independent random variables”, Ann. Statist., 17:1 (1989), 170–183 | DOI | MR | Zbl

[9] Ghosh M., Dasgupta R., “Berry–Esseen theorem for $U$-statistics in non-i.i.d. case”, Colloq. Math. Soc. János Bolyai, 32 (1982), 293–313 | MR | Zbl

[10] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl