@article{TVP_2003_48_1_a7,
author = {L. V. Gadasina},
title = {Berry{\textendash}Esseen inequalities for $U$-statistics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {151--155},
year = {2003},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a7/}
}
L. V. Gadasina. Berry–Esseen inequalities for $U$-statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 151-155. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a7/
[1] Borovskikh Yu. V., “O normalnoi approksimatsii $U$-statistik”, Teoriya veroyatn. i ee primen., 45:3 (2000), 469–488 | MR | Zbl
[2] Korolyuk V. S., Borovskikh Yu. V., Teoriya $U$-statistik, Naukova dumka, Kiev, 1989, 384 pp. | MR | Zbl
[3] Malevich T. L., Abdurakhmanov G. R., “Tsentralnaya predelnaya teorema dlya obobschennykh (neodnorodnykh) $U$-statistik ot razlichno raspredelennykh sluchainykh velichin”, Izv. AN UzSSR, ser. fiz.-matem. nauk, 1986, no. 2, 28–33 | MR | Zbl
[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 738 pp.
[5] Khashimov Sh. A., Abdurakhmanov G. R., “Ob otsenke skorosti skhodimosti v tsentralnoi predelnoi teoreme dlya obobschennykh $U$-statistik”, Teoriya veroyatn. i ee primen., 43:1 (1998), 69–81 | MR | Zbl
[6] Alberink I. B., “A Berry–Esseen bound for $U$-statistics in non-i.i.d. case”, J. Theoret. Probab., 13:2 (2000), 519–533 | DOI | MR | Zbl
[7] Bentkus V., Götze F., Zitikis R., “Lower estimates of the convergence rate for $U$-statistics”, Ann. Probab., 22:4 (1994), 1707–1714 | DOI | MR | Zbl
[8] Friedrich K. O., “A Berry–Esseen bound for functions of independent random variables”, Ann. Statist., 17:1 (1989), 170–183 | DOI | MR | Zbl
[9] Ghosh M., Dasgupta R., “Berry–Esseen theorem for $U$-statistics in non-i.i.d. case”, Colloq. Math. Soc. János Bolyai, 32 (1982), 293–313 | MR | Zbl
[10] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl