The large deviation principle for stochastic processes. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 122-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the large deviation principle of stochastic processes as random elements of $l_{\infty}(T)$. We show that the large deviation principle in $l_{\infty}(T)$ is equivalent to the large deviation principle of the finite dimensional distributions plus an exponential asymptotic equicontinuity condition with respect to a pseudometric which makes $T$ a totally bounded pseudometric space. This result allows us to obtain necessary and sufficient conditions for the large deviation principle of different types of stochastic processes. We discuss the large deviation principle of Gaussian and Poisson processes. As an application, we determine the integrability of the iterated fractional Brownian motion.
Keywords: large deviations, stochastic processes, Gaussian processes, iterated Brownian motion
Mots-clés : Poisson process.
@article{TVP_2003_48_1_a6,
     author = {M. A. Arcones},
     title = {The large deviation principle for stochastic {processes.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {122--150},
     year = {2003},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a6/}
}
TY  - JOUR
AU  - M. A. Arcones
TI  - The large deviation principle for stochastic processes. II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 122
EP  - 150
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a6/
LA  - en
ID  - TVP_2003_48_1_a6
ER  - 
%0 Journal Article
%A M. A. Arcones
%T The large deviation principle for stochastic processes. II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 122-150
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a6/
%G en
%F TVP_2003_48_1_a6
M. A. Arcones. The large deviation principle for stochastic processes. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 122-150. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a6/

[1] Arcones M. A., “On the law of the iterated logarithm for Gaussian Processes”, J. Theoret. Probab., 8:4 (1995), 877–903 | DOI | MR | Zbl

[2] Arcones M. A., “Weak convergence of convex stochastic processes”, Statist. Probab. Lett., 37:2 (1998), 171–182 | DOI | MR | Zbl

[3] Bahadur R. R., Some Limit Theorems in Statistics, SIAM, Philadelphia, PA, 1971, 42 pp. | MR | Zbl

[4] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl

[5] Borell C., “The Brunn–Minkowski inequality in Gauss space”, Invent. Math., 30 (1975), 207–216 | DOI | MR | Zbl

[6] Burdzy K., “Some path properties of iterated Brownian motion”, Seminar on Stochastic Processes (Seattle, WA, 1992), Progr. Probab., 33, Birkhäuser, Boston, 1993, 67–87 | MR

[7] Burdzy K., “Variation of iterated Brownian motion”, Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems (Montreal, 1992), CRM Proc. Lecture Notes, 5, Amer. Math. Soc., Providence, RI, 1994, 35–53 | MR | Zbl

[8] Chevet S., “Gaussian measures and large deviations”, Probability in Banach Spaces IV (Oberwolfach, 1982), Lecture Notes in Math., 990, Springer-Verlag, Berlin, Heidelberg, 1983, 30–46 | MR

[9] Csáki E., Csörgö M., Földes A., Révész P., “Global Strassen-type theorems for iterated Brownian motions”, Stochastic Process. Appl., 59:2 (1995), 321–341 | DOI | MR | Zbl

[10] Csáki E., Földes A., Révész P., “Strassen theorems for a class of iterated processes”, Trans. Amer. Math. Soc., 349:3 (1997), 1153–1167 | DOI | MR | Zbl

[11] Deheuvels P., Mason D. M., “A functional L.I.L. approach to pointwise Bahadur–Kiefer theorems”, Probability in Banach Spaces 8, Proceedings of the Eighth international conference, eds. R. M. Dudley et al., Birkhäuser, Boston, 1992, 255–266 | MR | Zbl

[12] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998, 396 pp. | MR | Zbl

[13] Deuschel J.-D., Stroock D. W., Large Deviations, Academic Press, Boston, MA, 1989, 307 pp. | MR | Zbl

[14] Donsker M. D., Varadhan S. R. S., “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29:4 (1976), 389–461 | DOI | MR | Zbl

[15] Dudley R. M., Uniform Central Limit Theorems, Cambridge University Press, Cambridge, 1999, 436 pp. | MR

[16] Dunford N., Schwartz J. T., Linear Operators. Part I: General Theory, Wiley, New York, 1988, 858 pp. | MR

[17] Ellis R. S., “Large deviations for a general class of random vectors”, Ann. Probab., 12:1 (1984), 1–12 | DOI | MR | Zbl

[18] Funaki T., “Probabilistic construction of the solution of some higher order parabolic differential equations”, Proc. Japan Acad., 55:5 (1979), 176–179 | DOI | MR | Zbl

[19] Hoffmann-Jørgensen J., Stochastic Processes on Polish Spaces, Various Publications Ser., 39, Aarhus Univ., Aarhus, 1991, 278 pp. | MR | Zbl

[20] Hu Y., Shi Z., “The Csörgö–Révész modulus of non-differentiability of iterated Brownian motion”, Stochastic Process. Appl., 58:2 (1995), 267–279 | DOI | MR | Zbl

[21] Hu Y., Pierre-Loti-Viaud D., Shi Z., “Laws of the iterated logarithm for iterated Wiener processes”, J. Theoret. Probab., 8:2 (1995), 303–319 | DOI | MR | Zbl

[22] Khoshnevisan D., Lewis T. M., “The uniform modulus of continuity of iterated Brownian motion”, J. Theoret. Probab., 9:2 (1996), 317–333 | DOI | MR | Zbl

[23] Khoshnevisan D., Lewis T. M., “Chung's law of the iterated logarithm for iterated Brownian motion”, Ann. Inst. H. Poincaré Probab. Statist., 32:3 (1996), 349–359 | MR | Zbl

[24] Lynch J., Sethuraman J., “Large deviations for processes with independent increments”, Ann. Probab., 15:2 (1987), 610–627 | DOI | MR | Zbl

[25] Puhalskii A., “On functional principle of large deviations”, New Trends in Probability and Statistics (Bakuriani, 1990), v. 1, VSP, Utrecht, 1991, 198–218 | MR

[26] Rao M. M., Ren Z. D., Theory of Orlicz Spaces, Dekker, New York, 1991, 449 pp. | MR | Zbl

[27] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[28] Schilder M., “Some asymptotic formulas for Wiener integrals”, Trans. Amer. Math. Soc., 134 (1966), 193–216 | MR

[29] Shi Z., “Lower limits of iterated Wiener processes”, Statist. Probab. Lett., 23:3 (1995), 259–270 | DOI | MR | Zbl

[30] Sudakov V. N., Tsirelson B. S., “Ekstremalnye svoistva poluprostranstv dlya sfericheski invariantnykh mer”, Zap. nauchn. semin. LOMI, 41, 1974, 14–24 | MR | Zbl

[31] van der Vaart A. W., Wellner J. A., Weak Convergence and Empirical Processes. With Applications to Statistics, Springer-Verlag, New York, 1996, 508 pp. | MR

[32] Varadhan S. R. S., “Asymptotic probabilities and differential equations”, Comm. Pure Appl. Math., 19 (1966), 261–286 | DOI | MR | Zbl

[33] Varadhan S. R. S., Large Deviations and Applications, SIAM, Philadelphia, 1984, 75 pp. | MR

[34] Willard S., General Topology, Addison-Wesley, Reading, 1970, 369 pp. | MR | Zbl