Limit theorems for increments of sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 104-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the almost surely asymptotic behavior of increments of sums of independent identically distributed random variables satisfying the one-sided Cramér condition. We establish that, irrespective of the length of the increments, the norming sequence in strong limit theorems for increments of sums is determined by a behavior of the inverse function to the function of deviations. This allows for unifying the following well-known results for increments of sums: the strong law of large numbers, the Erdős–Rényi law and Mason's extension of this law, the Shepp law, the Csörgő–Révész theorems, and the law of the iterated logarithm. In the case of large increments, we derive new results for random variables from the domain of attraction of a stable law with index $\alpha\in (1,2]$ and the parameter of symmetry $\beta=-1$.
Keywords: increments of sums of independent random variables, large deviations, Erdős–Rényi law, Shepp law, strong approximations laws, strong law of large numbers, law of the iterated logarithm.
@article{TVP_2003_48_1_a5,
     author = {A. N. Frolov},
     title = {Limit theorems for increments of sums of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {104--121},
     year = {2003},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a5/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - Limit theorems for increments of sums of independent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 104
EP  - 121
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a5/
LA  - ru
ID  - TVP_2003_48_1_a5
ER  - 
%0 Journal Article
%A A. N. Frolov
%T Limit theorems for increments of sums of independent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 104-121
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a5/
%G ru
%F TVP_2003_48_1_a5
A. N. Frolov. Limit theorems for increments of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 104-121. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a5/

[1] Shepp L. A., “A limit law concerning moving averages”, Ann. Math. Statist., 35 (1964), 424–428 | DOI | MR | Zbl

[2] Erdős P., Rényi A., “On a new law of large numbers”, J. Anal. Math., 23 (1970), 103–111 | DOI | MR | Zbl

[3] Csörgő S., “Erdős–Rényi laws”, Ann. Statist., 7 (1979), 772–787 | DOI | MR | Zbl

[4] Deheuvels P., Devroye L., “Limit laws of Erdős–Rényi–Shepp type”, Ann. Probab., 15 (1987), 1363–1386 | DOI | MR | Zbl

[5] Mason D. M., “An extended version of the Erdős–Rényi strong law of large numbers”, Ann. Probab., 17 (1989), 257–265 | DOI | MR | Zbl

[6] Csörgő M., Révész P., Strong Approximations in Probability and Statistics, Akadémiai Kiadó, Budapest, 1981, 285 pp. | MR | Zbl

[7] Zinchenko N. M., “Asimptotika priraschenii ustoichivykh sluchainykh protsessov so skachkami odnogo znaka”, Teoriya veroyatn. i ee primen., 32:4 (1987), 793–796 | MR

[8] Frolov A. N., “On one-sided strong laws for large increments of sums”, Statist. Probab. Lett., 37:2 (1998), 155–165 | DOI | MR | Zbl

[9] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:2 (1965), 310–322 | MR | Zbl

[10] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986, 432 pp. | MR | Zbl

[11] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 320 pp. | MR

[12] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[13] Feller W., “Limit theorems for probabilities of large deviations”, Z. Wahrscheinlichkeitstheor. verw. Geb., 14 (1969), 1–20 | DOI | MR | Zbl

[14] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 144 pp. | MR | Zbl

[15] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.