Mots-clés : Cramér condition.
@article{TVP_2003_48_1_a4,
author = {L. V. Rozovskii},
title = {Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the {Cram\'er} condition},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {78--103},
year = {2003},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a4/}
}
TY - JOUR AU - L. V. Rozovskii TI - Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cramér condition JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2003 SP - 78 EP - 103 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a4/ LA - ru ID - TVP_2003_48_1_a4 ER -
%0 Journal Article %A L. V. Rozovskii %T Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cramér condition %J Teoriâ veroâtnostej i ee primeneniâ %D 2003 %P 78-103 %V 48 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a4/ %G ru %F TVP_2003_48_1_a4
L. V. Rozovskii. Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cramér condition. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 78-103. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a4/
[1] Borovkov A. A., Rogozin B. A., “O tsentralnoi predelnoi teoreme v mnogomernom sluchae”, Teoriya veroyatn. i ee primen., 10:1 (1965), 61–69 | MR | Zbl
[2] Daniels H. E., “Saddlepoint approximations in statistics”, Ann. Math. Statist., 25:4 (1954), 631–650 | DOI | MR | Zbl
[3] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:2 (1965), 310–322 | MR | Zbl
[4] Nagaev A. V., “Bolshie ukloneniya dlya odnogo klassa raspredelenii”, Predelnye teoremy teorii veroyatnostei, AN UzSSR, Tashkent, 1963, 56–68
[5] Kramer G., “Ob odnoi novoi predelnoi teoreme teorii veroyatnostei”, Uspekhi matem. nauk, 1944, no. 10, 166–178
[6] Bahadur R. R., Ranga Rao R., “On deviations of the sample mean”, Ann. Math. Statist., 31:4 (1960), 1015–1027 | DOI | MR | Zbl
[7] Höglund T., “A unified formulation of the central limit theorem for small and large deviations from the mean”, Z. Wahrscheinlichkeitstheor. verw. Geb., 49 (1979), 105–117 | DOI | MR | Zbl
[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984, 527 pp.
[9] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR
[10] Statulyavichus V. A., “Predelnye teoremy dlya plotnostei i asimptoticheskie razlozheniya dlya raspredelenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:4 (1965), 645–659
[11] Rozovskii L. V., “Otsenka integrala ot modulya kharakteristicheskoi funktsii obobschennogo puassonovskogo raspredeleniya po intervalu maloi dliny”, Zap. nauchn. semin. POMI, 260, 1999, 240–249 | MR
[12] Khastings N., Pikok Dzh., Spravochnik po statisticheskim raspredeleniyam, Statistika, M., 1980, 95 pp.
[13] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, M., 1962, 808 pp.
[14] Nagaev A. V., “Bolshie ukloneniya dlya odnogo klassa polozhitelnykh sluchainykh velichin”, Izv. AN UzSSR, 1963, no. 1, 18–20 | MR | Zbl
[15] Nagaev A. V., Khodzhabagyan S. S., “Predelnye teoremy, uchityvayuschie bolshie ukloneniya, dlya summ polozhitelnykh sluchainykh velichin”, Litov. matem. sb., 14:1 (1974), 149–163 | MR | Zbl
[16] Nagaev A. V., “Bolshie ukloneniya dlya summ reshetchatykh sluchainykh velichin pri vypolnenii usloviya Kramera”, Diskretn. matem., 10:3 (1998), 115–130 | MR | Zbl