Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cram\'er condition
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 78-103

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the asymptotic behavior of a density of a sum of independent identically distributed random variables with a common absolutely continuous distribution satisfying the right-hand Cramér condition. We prove that for a definite class of such distributions the well-known asymptotic representations in local and integral limit theorems are valid in the case of large deviations of arbitrarily high order.
Keywords: independent random variables, density function, large deviations, Cramér condition.
@article{TVP_2003_48_1_a4,
     author = {L. V. Rozovskii},
     title = {Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the {Cram\'er} condition},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {78--103},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a4/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cram\'er condition
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 78
EP  - 103
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a4/
LA  - ru
ID  - TVP_2003_48_1_a4
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cram\'er condition
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 78-103
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a4/
%G ru
%F TVP_2003_48_1_a4
L. V. Rozovskii. Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cram\'er condition. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 78-103. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a4/