Asymptotic and structural theorems for the Markov renewal equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 62-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The multidimensional renewal equation $$ \varphi(t)=g(t)+\int_0^t[dF(x)]\,\varphi(t-x) $$ is considered. Here $g\in L_1^n(0;\infty)$, $F(t)=(F_{ij}(t))_{i,j=1}^n$ $(n<\infty)$, $F(t)=0$ for $t\le 0$, $F(t)\uparrow$, $r(A)=1$, where $A=F(+\infty)$ and $r(A)$ is the spectral radius of the matrix $A$. For the particular case of the Markov renewal equation $\int^{n}_{i=1} F_{ij}(+\infty)=1$. We assume that $A$ is an indecomposable matrix and a convolution power of the measure $dF$ has a nontrivial absolutely continuous component. Under these conditions it is shown that the solution of the Markov renewal equation has the form: $\varphi(t)=\mu+\rho(t)+\psi(t)$, $\rho\in C_0^n[0;\infty)$, $\psi\in L_1^n(0;\infty)$. If $dF$ is a measure with finite second moment, then $\rho\in L_1^n(0;\infty)$. Explicit formulas are obtained for $\mu$ and $\sigma=\int_0^\infty[\varphi(t)-\mu]\,dt$. Hence there follows, in particular, an asymptotic formula for $\int_0^t\varphi(x)\,dx$.
Keywords: structure and asymptotics of the solution of a multidimensional renewal equation.
@article{TVP_2003_48_1_a3,
     author = {N. B. Engibaryan},
     title = {Asymptotic and structural theorems for the {Markov} renewal equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {62--77},
     year = {2003},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Asymptotic and structural theorems for the Markov renewal equation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 62
EP  - 77
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/
LA  - ru
ID  - TVP_2003_48_1_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Asymptotic and structural theorems for the Markov renewal equation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 62-77
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/
%G ru
%F TVP_2003_48_1_a3
N. B. Engibaryan. Asymptotic and structural theorems for the Markov renewal equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 62-77. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/

[1] Korolyuk V. S., Brodi S. M., Turbin A. F., “Polumarkovskie protsessy i ikh primenenie”, Itogi nauki i tekhniki, ser. teoriya veroyatn., matem. statist., teoret. kibernet., 11, 1974, 47–97 | Zbl

[2] Pyke R., “Markov renewal processes: definitions and preliminary properties”, Ann. Math. Statist., 32:4 (1961), 1231–1242 | DOI | MR | Zbl

[3] Jacod J., “Théorème de renouvellement et classification pour les chaînes semi-markoviennes”, Ann. Inst. H. Poincaré, 7:2 (1971), 83–129 ; 10 (1974), 201–209 | MR | Zbl | MR | Zbl

[4] Hunter J. J., “On the renewal density matrix of a semi-Markov process”, Sankhyā, Ser. A, 31:3 (1969), 281–308 | MR | Zbl

[5] Sevastyanov B. A., Chistyakov V. P., “Uravneniya mnogomernogo vosstanovleniya i momenty vetvyaschikhsya protsessov”, Teoriya veroyatn. i ee primen., 16:2 (1971), 201–216

[6] Engibaryan N. B., “Teoremy vosstanovleniya dlya sistemy integralnykh uravnenii”, Matem. sb., 189:12 (1998), 59–72 | MR | Zbl

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[8] Koks D., Smit V., Teoriya vosstanovleniya, Sovetskoe radio, M., 1967, 299 pp. | MR

[9] Sevastyanov B. A., “Teoriya vosstanovleniya”, Itogi nauki i tekhniki, ser. teoriya veroyatn. matem. statist., teoret. kibernet., 1974, 99–128

[10] Engibaryan N. B., “Uravneniya vosstanovleniya na poluosi”, Izv. RAN, ser. matem., 63:1 (1999), 61–76 | MR | Zbl

[11] Tsalyuk Z. B., “Integralnye uravneniya Volterra”, Itogi nauki i tekhniki, ser. matem. analiz, 15, 1977, 131–198 | Zbl

[12] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR

[13] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi matem. nauk, 13:5 (1958), 3–120 | MR

[14] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979, 493 pp. | MR

[15] Grigoryan G. A., “Razreshimost odnogo klassa integralnykh uravnenii Vinera–Khopfa”, Izv. NAN Armenii, ser. matem., 31:2 (1996), 27–39 | MR | Zbl