Asymptotic and structural theorems for the Markov renewal equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 62-77

Voir la notice de l'article provenant de la source Math-Net.Ru

The multidimensional renewal equation $$ \varphi(t)=g(t)+\int_0^t[dF(x)]\,\varphi(t-x) $$ is considered. Here $g\in L_1^n(0;\infty)$, $F(t)=(F_{ij}(t))_{i,j=1}^n$ $(n\infty)$, $F(t)=0$ for $t\le 0$, $F(t)\uparrow$, $r(A)=1$, where $A=F(+\infty)$ and $r(A)$ is the spectral radius of the matrix $A$. For the particular case of the Markov renewal equation $\int^{n}_{i=1} F_{ij}(+\infty)=1$. We assume that $A$ is an indecomposable matrix and a convolution power of the measure $dF$ has a nontrivial absolutely continuous component. Under these conditions it is shown that the solution of the Markov renewal equation has the form: $\varphi(t)=\mu+\rho(t)+\psi(t)$, $\rho\in C_0^n[0;\infty)$, $\psi\in L_1^n(0;\infty)$. If $dF$ is a measure with finite second moment, then $\rho\in L_1^n(0;\infty)$. Explicit formulas are obtained for $\mu$ and $\sigma=\int_0^\infty[\varphi(t)-\mu]\,dt$. Hence there follows, in particular, an asymptotic formula for $\int_0^t\varphi(x)\,dx$.
Keywords: structure and asymptotics of the solution of a multidimensional renewal equation.
@article{TVP_2003_48_1_a3,
     author = {N. B. Engibaryan},
     title = {Asymptotic and structural theorems for the {Markov} renewal equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {62--77},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Asymptotic and structural theorems for the Markov renewal equation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 62
EP  - 77
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/
LA  - ru
ID  - TVP_2003_48_1_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Asymptotic and structural theorems for the Markov renewal equation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 62-77
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/
%G ru
%F TVP_2003_48_1_a3
N. B. Engibaryan. Asymptotic and structural theorems for the Markov renewal equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 62-77. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/