Asymptotic and structural theorems for the Markov renewal equation
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 62-77
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The multidimensional renewal equation
$$
\varphi(t)=g(t)+\int_0^t[dF(x)]\,\varphi(t-x)
$$
is considered. Here $g\in L_1^n(0;\infty)$, $F(t)=(F_{ij}(t))_{i,j=1}^n$ $(n\infty)$, $F(t)=0$  for $t\le 0$, $F(t)\uparrow$, $r(A)=1$, where $A=F(+\infty)$ and $r(A)$ is the spectral radius of the matrix $A$. For the particular case of the Markov renewal equation $\int^{n}_{i=1} F_{ij}(+\infty)=1$.
We assume that $A$ is an indecomposable matrix and a convolution power of the measure $dF$ has a nontrivial absolutely continuous component. Under these conditions it is shown that the solution of the Markov
renewal equation has the form: $\varphi(t)=\mu+\rho(t)+\psi(t)$, $\rho\in C_0^n[0;\infty)$, $\psi\in L_1^n(0;\infty)$. If $dF$  is a measure with finite second moment, then $\rho\in L_1^n(0;\infty)$. Explicit formulas are obtained for $\mu$ and $\sigma=\int_0^\infty[\varphi(t)-\mu]\,dt$. Hence there follows, in particular, an asymptotic formula for $\int_0^t\varphi(x)\,dx$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
structure and asymptotics of the solution of a multidimensional renewal equation.
                    
                  
                
                
                @article{TVP_2003_48_1_a3,
     author = {N. B. Engibaryan},
     title = {Asymptotic and structural theorems for the {Markov} renewal equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {62--77},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/}
}
                      
                      
                    N. B. Engibaryan. Asymptotic and structural theorems for the Markov renewal equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 62-77. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a3/
