Random mappings and a generalized additive functionals of a Wiener process
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 43-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The definition of a generalized additive homogeneous functional of a Wiener process is introduced. It is shown that a generalized functional is uniquely specified by its characteristics. In this case the functions from the Schwartz space $S^*$ of slowly growing generalized functions play the role of generating functions.
Keywords: generalized Wiener functionals, multiple stochastic integrals, additive functionals.
@article{TVP_2003_48_1_a2,
     author = {A. A. Dorogovtsev and V. V. Bakunin},
     title = {Random mappings and a generalized additive functionals of a {Wiener} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {43--61},
     year = {2003},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a2/}
}
TY  - JOUR
AU  - A. A. Dorogovtsev
AU  - V. V. Bakunin
TI  - Random mappings and a generalized additive functionals of a Wiener process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 43
EP  - 61
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a2/
LA  - ru
ID  - TVP_2003_48_1_a2
ER  - 
%0 Journal Article
%A A. A. Dorogovtsev
%A V. V. Bakunin
%T Random mappings and a generalized additive functionals of a Wiener process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 43-61
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a2/
%G ru
%F TVP_2003_48_1_a2
A. A. Dorogovtsev; V. V. Bakunin. Random mappings and a generalized additive functionals of a Wiener process. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 43-61. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a2/

[1] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963, 860 pp. | MR

[2] He S. W., Yang W. Q., Yao R. Q., Wang J. G., “Local times of self-intersection for multidimensional Brownian motion”, Nagoya Math. J., 138 (1995), 51–64 | MR | Zbl

[3] Imkeller P., Perez-Abreu V., Vives J., “Chaos expansions of double intersection local time of Brownian motion in $\mathbb R^d$ and renormalization”, Stochastic Process. Appl., 56:1 (1995), 1–34 | DOI | MR | Zbl

[4] Watanabe H., “The local time of self-intersections of Brownian motions as generalized Brownian functionals”, Letters in Math. Phys., 23:1 (1991), 1–9 | DOI | MR | Zbl

[5] Watanabe S., Lectures on Stochastic Differential Equations and Malliavin Calculus, Springer-Verlag, Berlin, Heidelberg, 1984, 118 pp. | MR

[6] Hida T., Analysis of Brownian Functionals, Carleton Mathematical Lecture Notes, 13, Carleton Univ., Ottawa, 1975, 61 pp. | MR | Zbl

[7] Dorogovtsev A. A., Stokhasticheskii analiz i sluchainye otobrazheniya v gilbertovom prostranstve, Naukova dumka, Kiev, 1992, 120 pp. | MR | Zbl

[8] Skorokhod A. V., Sluchainye lineinye operatory, Naukova dumka, Kiev, 1979, 200 pp. | MR | Zbl

[9] Dorogovtsev A. A., “O superpozitsii sluchainykh otobrazhenii v gilbertovom prostranstve”, Teoriya veroyatn. i ee primen., 34:2 (1989), 364–370 | MR | Zbl

[10] Sege G., Ortogonalnye mnogochleny, IL, M., 1962, 500 pp.

[11] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986, 448 pp. | MR

[12] Bakun V. V., “Ob obobschennom lokalnom vremeni dlya protsessa brounovskogo dvizheniya”, Ukr. matem. zhurn., 52:2 (2000), 157–164 | MR | Zbl