Mots-clés : Hölder inequality
@article{TVP_2003_48_1_a13,
author = {G. Di Nunno},
title = {H\"older equality for conditional expectations with application to linear monotone operators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {194--198},
year = {2003},
volume = {48},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a13/}
}
G. Di Nunno. Hölder equality for conditional expectations with application to linear monotone operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 194-198. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a13/
[1] Albeverio S., Rozanov Yu. A., “On multi-period market extension with the uniformly equivalent martingale measure”, Acta. Appl. Math., 67:3 (2001), 253–275 | DOI | MR | Zbl
[2] Dinculeanu N., Vector Measures, Pergamon Press, Oxford, 1967, 432 pp. | MR
[3] Di Nunno G., Rozanov Yu. A., On monotone versions of Hahn–Banach extension theorem, IAMI 99.11, CNR, Milano, 1999
[4] Fuchssteiner B., Lusky W., Convex Cones, North-Holland, Amsterdam, 1981, 429 pp. | MR | Zbl
[5] Kreps D. M., “Arbitrage and equilibrium in economics with infinitely many commodities”, J. Math. Econom., 8:1 (1981), 15–35 | DOI | MR | Zbl
[6] Schaefer H. H., Banach Lattices and Positive Operators, Springer-Verlag, New York, 1974, 376 pp. | MR | Zbl
[7] Yosida K., Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1980, 501 pp. | MR | Zbl