$\sigma$-localization and $\sigma$-martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 177-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper introduces the concept of $\sigma$-localization, which is a generalization of localization in the general theory of stochastic processes. The $\sigma$-localized class derived from the set of martingales is the class of $\sigma$-martingales, which plays an important role in mathematical finance. These processes and the corresponding $\sigma$-martingale measures are considered in detail. By extending the stochastic integral with respect to compensated random measures, a canonical representation of $\sigma$-martingales as for local martingales is derived.
Keywords: $\sigma$-localization, stochastic integral, canonical representation, $\sigma$-martingale measure.
Mots-clés : $\sigma$-martingale
@article{TVP_2003_48_1_a11,
     author = {J. Kallsen},
     title = {$\sigma$-localization and $\sigma$-martingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {177--188},
     year = {2003},
     volume = {48},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a11/}
}
TY  - JOUR
AU  - J. Kallsen
TI  - $\sigma$-localization and $\sigma$-martingales
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 177
EP  - 188
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a11/
LA  - en
ID  - TVP_2003_48_1_a11
ER  - 
%0 Journal Article
%A J. Kallsen
%T $\sigma$-localization and $\sigma$-martingales
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 177-188
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a11/
%G en
%F TVP_2003_48_1_a11
J. Kallsen. $\sigma$-localization and $\sigma$-martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 177-188. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a11/

[1] Becherer D., “The numeraire portfolio for unbounded semimartingales”, Finance Stochastics, 5:3 (2001), 327–341 | DOI | MR | Zbl

[2] Shiryaev A. N., Chernyi A. S., “Vektornyi stokhasticheskii integral i fundamentalnye teoremy teorii arbitrazha”, Trudy matem. in-ta im. V. A. Steklova RAN, 237, 2002, 12–56 | MR | Zbl

[3] Chou C., “Caractérisation d'une classe de semimartingales”, Lecture Notes in Math., 721, 1979, 250–252 | MR | Zbl

[4] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[5] Delbaen F., Schachermayer W., “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–250 | DOI | MR | Zbl

[6] Emery M., “Compensation de processus à variation finie non localement intègrables”, Lectures Notes in Math., 784, 1980, 152–160 | MR | Zbl

[7] Goll T., Kallsen J., “Optimal portfolios for logarithmic utility”, Stochastic Process. Appl., 89:1 (2000), 31–48 | DOI | MR | Zbl

[8] Goll T., Kallsen J., “A complete explicit solution to the log-optimal portfolio problem”, Ann. Appl. Probab. (to appear) | MR

[9] Jacod J., Calcul stochastique et problèmes de martingales, Lectures Notes in Math., 714, Springer-Verlag, Berlin, 1979, 539 pp. | MR | Zbl

[10] Jacod J., “Intègrales stochastiques par rapport à une semi-martingale vectorielle et changements de filtration”, Lectures Notes in Math., 784, 1980, 161–172 | MR | Zbl

[11] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, v. 1, 2, Fizmatlit, M., 1994, 544 pp. ; 368 с. | MR

[12] Kabanov Yu. M., “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and Control of Stochastic Processes, eds. Yu. M. Kabanov et al., World Scientific, River Edge, NJ, 1997, 191–203 | MR | Zbl

[13] Kallsen J., Shiryaev A. N., “The cumulant process and Esscher's change of measure”, Finance Stochastics, 6:4 (2002), 397–428 | DOI | MR | Zbl

[14] Kallsen J., Shiryaev A. N., “Time change representation of stochastic integrals”, Teoriya veroyatn. i ee primen., 46:3 (2001), 579–585 | MR | Zbl

[15] Kramkov D., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl