Parabolic Itô equations with nonsmooth nonlinearity and duality approach
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 22-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies nonlinear stochastic partial differential equations with nonsmooth maximum type nonlinearity. The original equation is studied together with its adjoint equation being a backward stochastic parabolic equation, and together with an auxiliary optimal control problem. Conditions of solvability and uniqueness are obtained. In addition, it is shown that the solution is nonnegative if the free term is nonnegative.
Mots-clés : parabolic Itô equations
Keywords: backward equations, stochastic control problems.
@article{TVP_2003_48_1_a1,
     author = {N. G. Dokuchaev},
     title = {Parabolic {It\^o} equations with nonsmooth nonlinearity and duality approach},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {22--42},
     year = {2003},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a1/}
}
TY  - JOUR
AU  - N. G. Dokuchaev
TI  - Parabolic Itô equations with nonsmooth nonlinearity and duality approach
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 22
EP  - 42
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a1/
LA  - ru
ID  - TVP_2003_48_1_a1
ER  - 
%0 Journal Article
%A N. G. Dokuchaev
%T Parabolic Itô equations with nonsmooth nonlinearity and duality approach
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 22-42
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a1/
%G ru
%F TVP_2003_48_1_a1
N. G. Dokuchaev. Parabolic Itô equations with nonsmooth nonlinearity and duality approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 22-42. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a1/

[1] Rozovskii B. L., Evolyutsionnye stokhasticheskie sistemy. Lineinaya teoriya i prilozheniya k statistike sluchainykh protsessov, Nauka, M., 1983, 208 pp. | MR

[2] Chojnowska-Michalik A., Goldys B., “Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces”, Probab. Theory Relat. Fields, 102:3 (1995), 331–356 | DOI | MR | Zbl

[3] Da Prato G., Tubaro L., “Fully nonlinear stochastic partial differential equations”, SIAM J. Math. Anal., 27:1 (1996), 40–55 | DOI | MR | Zbl

[4] Maslowski B., “Stability of semilinear equations with boundary and pointwise noise”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:1 (1995), 55–93 | MR | Zbl

[5] Dokuchaev N. G., “Kraevye zadachi dlya funktsionalov ot protsessov Ito”, Teoriya veroyatn. i ee primen., 36:3 (1991), 464–481 | MR

[6] Dokuchaev N. G., “Raspredeleniya protsessov Ito: otsenki dlya plotnosti i dlya uslovnykh ozhidanii integralnykh funktsionalov”, Teoriya veroyatn. i ee primen., 39:4 (1994), 825–833 | MR | Zbl

[7] Zhou X. Y., “A duality analysis on stochastic partial differential equations”, J. Funct. Anal., 103:2 (1992), 275–293 | DOI | MR | Zbl

[8] Peng S., “Backward stochastic differential equations and applications to optimal control”, Appl. Math. Optim., 27:2 (1993), 125–144 | DOI | MR | Zbl

[9] Dokuchaev N. G., Zhou X. Y., “Stochastic controls with terminal contingent conditions”, J. Math. Anal. Appl., 238:1 (1999), 143–165 | DOI | MR | Zbl

[10] Dokuchaev N. G., “Upravlenie diffuziei kordesovskogo tipa s nepolnym nablyudeniem i v igrovoi zadache”, Differentsialnye uravneniya, 32:8 (1996), 1051–1062 | MR | Zbl

[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp.

[12] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR