Transient phenomena in a random walk
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 3-21
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper studies the limit distributions of the maximum of sums
$\max_{1\le k\le n}\sum_{l=1}^k\xi_{n,l}$ for the triangular array $\xi_{n,k}$,
$k=1,\ldots,n$, $n=1,2,\ldots\,$, of independent identically distributed
random variables in a singular series in cases where
$a_n=E\xi_{n,k}\to
0$ and/or 1) $a_n\sqrt n\to\infty$, or 2) $a_n\sqrt n\to-\infty$,
or 3) $a_n\sqrt n\to 0$ as $n\to\infty$.
The direct proof that the analytic expressions for limit laws
coincide was previously obtained
by different authors and is given. Moreover,
for these transient cases the convergence of the sequence of distributions
of maximums to the limit laws is proved with the help of the characteristic
functions method.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
triangular array, maximum of sequential sums, method of characteristic functions.
Mots-clés : limit distributions
                    
                  
                
                
                Mots-clés : limit distributions
@article{TVP_2003_48_1_a0,
     author = {A. K. Aleshkyavichene and S. V. Nagaev},
     title = {Transient phenomena in a random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/}
}
                      
                      
                    A. K. Aleshkyavichene; S. V. Nagaev. Transient phenomena in a random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/
