Transient phenomena in a random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 3-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the limit distributions of the maximum of sums $\max_{1\le k\le n}\sum_{l=1}^k\xi_{n,l}$ for the triangular array $\xi_{n,k}$, $k=1,\ldots,n$, $n=1,2,\ldots\,$, of independent identically distributed random variables in a singular series in cases where $a_n=E\xi_{n,k}\to 0$ and/or 1) $a_n\sqrt n\to\infty$, or 2) $a_n\sqrt n\to-\infty$, or 3) $a_n\sqrt n\to 0$ as $n\to\infty$. The direct proof that the analytic expressions for limit laws coincide was previously obtained by different authors and is given. Moreover, for these transient cases the convergence of the sequence of distributions of maximums to the limit laws is proved with the help of the characteristic functions method.
Keywords: triangular array, maximum of sequential sums, method of characteristic functions.
Mots-clés : limit distributions
@article{TVP_2003_48_1_a0,
     author = {A. K. Aleshkyavichene and S. V. Nagaev},
     title = {Transient phenomena in a random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--21},
     year = {2003},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/}
}
TY  - JOUR
AU  - A. K. Aleshkyavichene
AU  - S. V. Nagaev
TI  - Transient phenomena in a random walk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 3
EP  - 21
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/
LA  - ru
ID  - TVP_2003_48_1_a0
ER  - 
%0 Journal Article
%A A. K. Aleshkyavichene
%A S. V. Nagaev
%T Transient phenomena in a random walk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 3-21
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/
%G ru
%F TVP_2003_48_1_a0
A. K. Aleshkyavichene; S. V. Nagaev. Transient phenomena in a random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/

[1] Erdős P., Kac M., “On certain limit theorems of the theory of probability”, Bull. Amer. Math. Soc., 52 (1946), 292–302 | DOI | MR | Zbl

[2] Wald A., “Limit distribution of the maximum and minimum of successive cumulative sums of random variables”, Bull. Amer. Math. Soc., 53 (1947), 142–153 | DOI | MR | Zbl

[3] Chung K. L., “Asymptotic distribution of the maximum cumulative sum of independent random variables”, Bull. Amer. Math. Soc., 54 (1948), 1162–1170 | DOI | MR | Zbl

[4] Malmquist S., “On certain confidence contours for distribution functions”, Ann. Math. Statist., 25 (1954), 523–533 | DOI | MR | Zbl

[5] Prokhorov Yu. V., “Perekhodnye yavleniya v protsessakh massovogo obsluzhivaniya”, Litov. matem. sb., 3:1 (1963), 199–205 | MR

[6] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 368 pp. | MR

[7] Nagaev S. V., “Otsenka skorosti skhodimosti raspredeleniya maksimuma summ nezavisimykh sluchainykh velichin”, Sib. matem. zhurn., 10:3 (1969), 614–633 | MR | Zbl

[8] Nagaev S. V., “O skorosti skhodimosti v odnoi granichnoi zadache. I”, Teoriya veroyatn. i ee primen., 15:2 (1970), 179–199 | MR | Zbl

[9] Aleshkyavichene A. K., “Ob approksimatsii raspredeleniya maksimuma summ sluchainykh velichin s malym po absolyutnoi velichine srednim”, Litov. matem. sb., 18:2 (1978), 5–20 | MR | Zbl

[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962