Transient phenomena in a random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the limit distributions of the maximum of sums $\max_{1\le k\le n}\sum_{l=1}^k\xi_{n,l}$ for the triangular array $\xi_{n,k}$, $k=1,\ldots,n$, $n=1,2,\ldots\,$, of independent identically distributed random variables in a singular series in cases where $a_n=E\xi_{n,k}\to 0$ and/or 1) $a_n\sqrt n\to\infty$, or 2) $a_n\sqrt n\to-\infty$, or 3) $a_n\sqrt n\to 0$ as $n\to\infty$. The direct proof that the analytic expressions for limit laws coincide was previously obtained by different authors and is given. Moreover, for these transient cases the convergence of the sequence of distributions of maximums to the limit laws is proved with the help of the characteristic functions method.
Keywords: triangular array, maximum of sequential sums, method of characteristic functions.
Mots-clés : limit distributions
@article{TVP_2003_48_1_a0,
     author = {A. K. Aleshkyavichene and S. V. Nagaev},
     title = {Transient phenomena in a random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/}
}
TY  - JOUR
AU  - A. K. Aleshkyavichene
AU  - S. V. Nagaev
TI  - Transient phenomena in a random walk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 3
EP  - 21
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/
LA  - ru
ID  - TVP_2003_48_1_a0
ER  - 
%0 Journal Article
%A A. K. Aleshkyavichene
%A S. V. Nagaev
%T Transient phenomena in a random walk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 3-21
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/
%G ru
%F TVP_2003_48_1_a0
A. K. Aleshkyavichene; S. V. Nagaev. Transient phenomena in a random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/TVP_2003_48_1_a0/