A nonuniform estimate for the error in short asymptotic expansions in Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 4, pp. 769-772
Cet article a éte moissonné depuis la source Math-Net.Ru
This work considers short asymptotic expansions of the probability for a sum of independent random elements to hit a ball in Hilbert space. An estimate for the error of the decomposition which is optimal with respect to a number of summands and depending only on at most 12 eigenvalues of the covariance operator of a summand is obtained. The error decreases if the distance between the bound of the ball and the zero element increases.
Keywords:
short asymptotic expansions, Hilbert space, nonuniform estimate.
@article{TVP_2002_47_4_a8,
author = {S. A. Bogatyrev},
title = {A nonuniform estimate for the error in short asymptotic expansions in {Hilbert} space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {769--772},
year = {2002},
volume = {47},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a8/}
}
S. A. Bogatyrev. A nonuniform estimate for the error in short asymptotic expansions in Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 4, pp. 769-772. http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a8/