Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 4, pp. 710-726
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper provides derivation, for $1$, of exact asymptotics as $u\to\infty$ of the probabilities 
$$
\mathbf{P}\biggl\{\biggl(\int_{[0,1]^n}|X(t)|^p\,dt\biggr)^{1/p}>u\biggr\}
$$
for two Gaussin fields, namely, the Wiener field of Jech–Chentsov and the so-called “Brownian cushion,” being, respectively, the multiparameter analogues of the Wiener process and the Brownian bridge. These Gaussian fields have zero means, and their respective covariance functions are $\prod_{i=1}^n\min(t_i, s_i)$ and $\prod_{i=1}^n[\min(t_i,s_i)-t_is_i]$, $t=(t_1,\dots,t_n)$, $s=(s_1,\dots,s_n)$. 
The method of analysis is the Laplace method in Banach spaces. We display the relation of the problem under consideration with the theory of nonlinear Hammerstein equations in $\mathbf{R}^n $ and the hyperbolic boundary-value problems of high order. Solutions of two particular problems of this kind are obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Wiener random field of Jech–Chentsov, Wiener cushion, Laplace method in Banach spaces, covariance operator of Gaussian measure, nonlinear Hammerstein equations, high-order hyperbolic boundary-value problems.
                    
                  
                
                
                @article{TVP_2002_47_4_a4,
     author = {V. R. Fatalov},
     title = {Asymptotics of large deviations for {Wiener} random fields in $L^p$-norm, nonlinear {Hammerstein} equations, and high-order hyperbolic boundary-value problems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {710--726},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a4/}
}
                      
                      
                    TY - JOUR AU - V. R. Fatalov TI - Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2002 SP - 710 EP - 726 VL - 47 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a4/ LA - ru ID - TVP_2002_47_4_a4 ER -
%0 Journal Article %A V. R. Fatalov %T Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems %J Teoriâ veroâtnostej i ee primeneniâ %D 2002 %P 710-726 %V 47 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a4/ %G ru %F TVP_2002_47_4_a4
V. R. Fatalov. Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 4, pp. 710-726. http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a4/
