Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 4, pp. 710-726

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides derivation, for $1$, of exact asymptotics as $u\to\infty$ of the probabilities $$ \mathbf{P}\biggl\{\biggl(\int_{[0,1]^n}|X(t)|^p\,dt\biggr)^{1/p}>u\biggr\} $$ for two Gaussin fields, namely, the Wiener field of Jech–Chentsov and the so-called “Brownian cushion,” being, respectively, the multiparameter analogues of the Wiener process and the Brownian bridge. These Gaussian fields have zero means, and their respective covariance functions are $\prod_{i=1}^n\min(t_i, s_i)$ and $\prod_{i=1}^n[\min(t_i,s_i)-t_is_i]$, $t=(t_1,\dots,t_n)$, $s=(s_1,\dots,s_n)$. The method of analysis is the Laplace method in Banach spaces. We display the relation of the problem under consideration with the theory of nonlinear Hammerstein equations in $\mathbf{R}^n $ and the hyperbolic boundary-value problems of high order. Solutions of two particular problems of this kind are obtained.
Keywords: Wiener random field of Jech–Chentsov, Wiener cushion, Laplace method in Banach spaces, covariance operator of Gaussian measure, nonlinear Hammerstein equations, high-order hyperbolic boundary-value problems.
@article{TVP_2002_47_4_a4,
     author = {V. R. Fatalov},
     title = {Asymptotics of large deviations for {Wiener} random fields in $L^p$-norm, nonlinear {Hammerstein} equations, and high-order hyperbolic boundary-value problems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {710--726},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a4/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2002
SP  - 710
EP  - 726
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a4/
LA  - ru
ID  - TVP_2002_47_4_a4
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2002
%P 710-726
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a4/
%G ru
%F TVP_2002_47_4_a4
V. R. Fatalov. Asymptotics of large deviations for Wiener random fields in $L^p$-norm, nonlinear Hammerstein equations, and high-order hyperbolic boundary-value problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 4, pp. 710-726. http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a4/