On the existence of weak solutions for stochastic differential equations with driving $L^0$-valued measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 4, pp. 672-685
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, for a stochastic differential equation with a $\sigma$-finite $L^0$-valued random measure $\theta$ in the sense of Bichteler and Jacod, a proof of the existence of its weak solution is given, which is based on a similar result for the particular case of an $L^2$-valued random measure.
Keywords:
$\sigma$-finite $L^p$-valued random measure, stochastic differential equation, weak solution, extension of a stochastic basis.
@article{TVP_2002_47_4_a2,
author = {V. A. Lebedev},
title = {On the existence of weak solutions for stochastic differential equations with driving $L^0$-valued measures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {672--685},
publisher = {mathdoc},
volume = {47},
number = {4},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a2/}
}
TY - JOUR AU - V. A. Lebedev TI - On the existence of weak solutions for stochastic differential equations with driving $L^0$-valued measures JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2002 SP - 672 EP - 685 VL - 47 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a2/ LA - ru ID - TVP_2002_47_4_a2 ER -
%0 Journal Article %A V. A. Lebedev %T On the existence of weak solutions for stochastic differential equations with driving $L^0$-valued measures %J Teoriâ veroâtnostej i ee primeneniâ %D 2002 %P 672-685 %V 47 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a2/ %G ru %F TVP_2002_47_4_a2
V. A. Lebedev. On the existence of weak solutions for stochastic differential equations with driving $L^0$-valued measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 4, pp. 672-685. http://geodesic.mathdoc.fr/item/TVP_2002_47_4_a2/