On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 533-547
Cet article a éte moissonné depuis la source Math-Net.Ru
By applying a recent result of Hu et al. [Stochastic Anal. Appl., 17 (1999), pp. 963–992], we extend and generalize the complete convergence results of Pruitt [J. Math. Mech., 15 (1966), pp. 769–776] and Rohatgi [Proc. Cambridge Philos. Soc., 69 (1971), pp. 305–307] to arrays of row-wise independent Banach space valued random elements. No assumptions are made concerning the geometry of the underlying Banach space. Illustrative examples are provided comparing the various results.
Keywords:
array of Banach space valued random elements, row-wise independence, weighted sums, complete convergence, rate of convergence, almost sure convergence.
@article{TVP_2002_47_3_a5,
author = {T.-C. Hu and D. Li and A. Rosalsky and A. I. Volodin},
title = {On the rate of complete convergence for weighted sums of arrays of {Banach} space valued random elements},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {533--547},
year = {2002},
volume = {47},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a5/}
}
TY - JOUR AU - T.-C. Hu AU - D. Li AU - A. Rosalsky AU - A. I. Volodin TI - On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2002 SP - 533 EP - 547 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a5/ LA - en ID - TVP_2002_47_3_a5 ER -
%0 Journal Article %A T.-C. Hu %A D. Li %A A. Rosalsky %A A. I. Volodin %T On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements %J Teoriâ veroâtnostej i ee primeneniâ %D 2002 %P 533-547 %V 47 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a5/ %G en %F TVP_2002_47_3_a5
T.-C. Hu; D. Li; A. Rosalsky; A. I. Volodin. On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 533-547. http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a5/