Moderate deviations for Student's statistic
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 518-532
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For self-normalized sums, say $S_n/V_n$, under symmetry conditions we consider Linnik-type zones, where the ratio $\mathbf{P}\{S_n/V_n\ge x\}/(1-\Phi(x))$ converges to 1, and establish optimal bounds for remainder terms related to this convergence.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Linnik zones, self-normalized sum, t-statistic, moderate deviations, nonuniform bounds.
                    
                    
                    
                  
                
                
                @article{TVP_2002_47_3_a4,
     author = {G. P. Chistyakov and F. G\"otze},
     title = {Moderate deviations for {Student's} statistic},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {518--532},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a4/}
}
                      
                      
                    G. P. Chistyakov; F. Götze. Moderate deviations for Student's statistic. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 518-532. http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a4/
