A new asymptotic expansion and asymptotically best constants in Lyapunov's theorem.~III
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 475-497
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new asymptotic expansion is obtained in Lyapunov's central limit theorem for distribution functions of centered and normed sums of independent random variables which are not necessary identically distributed. It is applied to determine the asymptotically best constants in the Berry–Esseen inequality, thus solving problems of their optimal values raised by Kolmogorov and Zolotarev.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
central limit theorem, Lyapunov's theorem, Berry–Esseen bounds, asymptotic expansion, characteristic functions.
                    
                  
                
                
                @article{TVP_2002_47_3_a2,
     author = {G. P. Chistyakov},
     title = {A new asymptotic expansion and asymptotically best constants in {Lyapunov's} {theorem.~III}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {475--497},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a2/}
}
                      
                      
                    TY - JOUR AU - G. P. Chistyakov TI - A new asymptotic expansion and asymptotically best constants in Lyapunov's theorem.~III JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2002 SP - 475 EP - 497 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a2/ LA - ru ID - TVP_2002_47_3_a2 ER -
G. P. Chistyakov. A new asymptotic expansion and asymptotically best constants in Lyapunov's theorem.~III. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 475-497. http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a2/
