Absorption probability at the border of a random walk in a quadrant and a branching process with interaction of particles
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 452-474
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Simple integral representations are obtained for the absorption probability at a boundary point of a random walk on the integer-valued lattice of a quadrant under various hypotheses about the distribution of the jumps of the random walk. To get the representations we apply the method of exponential generating function for solving a stationary first (backward) system of Kolmogorov differential equations suggested in [A. V. Kalinkin, Theory Probab. Appl., 27 (1982), pp. 201–205] and [A. V. Kalinkin, Sov. Math. Dokl., 27 (1983), pp. 493–497].
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
absorption probability of a random walk, branching process, exponential generating function, hyperbolic type partial differential equation, Darboux–Picard problem, Chebyshev polynomials.
Mots-clés : exact solutions
                    
                  
                
                
                Mots-clés : exact solutions
@article{TVP_2002_47_3_a1,
     author = {A. V. Kalinkin},
     title = {Absorption probability at the border of a random walk in a quadrant and a branching process with interaction of particles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {452--474},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Kalinkin TI - Absorption probability at the border of a random walk in a quadrant and a branching process with interaction of particles JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2002 SP - 452 EP - 474 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a1/ LA - ru ID - TVP_2002_47_3_a1 ER -
%0 Journal Article %A A. V. Kalinkin %T Absorption probability at the border of a random walk in a quadrant and a branching process with interaction of particles %J Teoriâ veroâtnostej i ee primeneniâ %D 2002 %P 452-474 %V 47 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a1/ %G ru %F TVP_2002_47_3_a1
A. V. Kalinkin. Absorption probability at the border of a random walk in a quadrant and a branching process with interaction of particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 452-474. http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a1/
