Branching systems with long-living particles at the critical dimension
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 417-451
Cet article a éte moissonné depuis la source Math-Net.Ru
A spatial branching process is considered in which particles have a lifetime law with a tail index smaller than one. It is shown that at the critical dimension, unlike classical branching particle systems the population does not suffer local extinction when started from a spatially homogeneous Poissonian initial population. In fact, persistent convergence to a mixed Poissonian particle system is shown. The random intensity of the limiting process is characterized in law by the random density in a space point of a related age-dependent superprocess at a fixed time. The proof relies on a refined study of the system starting from asymptotically large but finite initial populations.
Keywords:
branching particle system, residual lifetime process, stable subordinator, critical dimension, limit theorem, long-living particles, absolute continuity, random density, mixed Poissonian particle system.
Mots-clés : superprocess, persistence
Mots-clés : superprocess, persistence
@article{TVP_2002_47_3_a0,
author = {A. Wakolbinger and V. A. Vatutin and K. Fleischmann},
title = {Branching systems with long-living particles at the critical dimension},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {417--451},
year = {2002},
volume = {47},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a0/}
}
TY - JOUR AU - A. Wakolbinger AU - V. A. Vatutin AU - K. Fleischmann TI - Branching systems with long-living particles at the critical dimension JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2002 SP - 417 EP - 451 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a0/ LA - ru ID - TVP_2002_47_3_a0 ER -
A. Wakolbinger; V. A. Vatutin; K. Fleischmann. Branching systems with long-living particles at the critical dimension. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 417-451. http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a0/