Branching systems with long-living particles at the critical dimension
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 417-451
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A spatial branching process is considered in which particles have a lifetime law with a tail index smaller than one. It is shown that at the critical dimension, unlike classical branching particle systems the population does not suffer local extinction when started from a spatially homogeneous Poissonian initial population. In fact, persistent convergence to a mixed Poissonian particle system is shown. The random intensity of the limiting process is characterized in law by the random density in a space point of a related age-dependent superprocess at a fixed time. The proof relies on a refined study of the system starting from asymptotically large but finite initial populations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
branching particle system, residual lifetime process, stable subordinator, critical dimension, limit theorem, long-living particles, absolute continuity, random density, mixed Poissonian particle system.
Mots-clés : superprocess, persistence
                    
                  
                
                
                Mots-clés : superprocess, persistence
@article{TVP_2002_47_3_a0,
     author = {A. Wakolbinger and V. A. Vatutin and K. Fleischmann},
     title = {Branching systems with long-living particles at the critical dimension},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--451},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a0/}
}
                      
                      
                    TY - JOUR AU - A. Wakolbinger AU - V. A. Vatutin AU - K. Fleischmann TI - Branching systems with long-living particles at the critical dimension JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2002 SP - 417 EP - 451 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a0/ LA - ru ID - TVP_2002_47_3_a0 ER -
%0 Journal Article %A A. Wakolbinger %A V. A. Vatutin %A K. Fleischmann %T Branching systems with long-living particles at the critical dimension %J Teoriâ veroâtnostej i ee primeneniâ %D 2002 %P 417-451 %V 47 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a0/ %G ru %F TVP_2002_47_3_a0
A. Wakolbinger; V. A. Vatutin; K. Fleischmann. Branching systems with long-living particles at the critical dimension. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 417-451. http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a0/
