On extending the Brunk--Prokhorov strong law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 347-349

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the sequence $\{b_n^{-1}(X_1+\dots+X_n)\}_{n\ge 1}$ converges almost everywhere to zero if $\{X_n\}_{n\ge 1}$ is a martingale difference with respect to some increasing sequence of $\sigma$-algebras of the basic probability space, the series $\sum_{n=1}^{\infty}n^{r-1}b_n^{-2r}E|X_n|^{2r}$ converges for some $r > 1$, the sequence of positive numbers $\{b_n\}_{n\ge 1}$ does not decrease and is unbounded, and there exists a strictly increasing sequence of positive integers $\{k_n\}_{n\ge 1}$ such that $\sup_{n\ge 1}k_{n+1}k_n^{-1}=d \infty$ and $$ 0=\inf_{n\ge 1}b_{k_n}b_{k_{n+1}}^{-1}\le \sup_{n\ge 1}b_{k_n}b_{k_{n+1}}^{-1}=c1. $$ For $b_n=n$, all hypotheses are satisfied and the theorem reduces to the well-known theorem due to Brunk and Prokhorov for independent random variables.
Keywords: strong law of large numbers, almost everywhere convergence.
Mots-clés : martingale
@article{TVP_2002_47_2_a9,
     author = {V. M. Kruglov},
     title = {On extending the {Brunk--Prokhorov} strong law of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {347--349},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a9/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - On extending the Brunk--Prokhorov strong law of large numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2002
SP  - 347
EP  - 349
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a9/
LA  - ru
ID  - TVP_2002_47_2_a9
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T On extending the Brunk--Prokhorov strong law of large numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2002
%P 347-349
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a9/
%G ru
%F TVP_2002_47_2_a9
V. M. Kruglov. On extending the Brunk--Prokhorov strong law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 347-349. http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a9/