Extensions of type $G$ and marginal infinite divisibility
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 301-319
Cet article a éte moissonné depuis la source Math-Net.Ru
We say that a random variate on a Euclidean space is marginal infinitely divisible with respect to a class of linear mappings on that space if each of these mappings results in an infinitely divisible random variate. Special cases are applied in a multivariate extension of the concept of type $G$ probability laws. Random nonnegative matrices play a central role.
Keywords:
inverse Wishart distribution, matrix inverse Gaussian law, multivariate normal inverse Gaussian law, multivariate stable laws, random positive definite matrices, self-decomposability.
@article{TVP_2002_47_2_a5,
author = {O. E. Barndorff-Nielsen and V. P\'erez-Abreu},
title = {Extensions of type $G$ and marginal infinite divisibility},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {301--319},
year = {2002},
volume = {47},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a5/}
}
O. E. Barndorff-Nielsen; V. Pérez-Abreu. Extensions of type $G$ and marginal infinite divisibility. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 301-319. http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a5/