An iterated random function with Lipschitz number one
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 286-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider the set of functions $f_{\theta}(x)=|\theta -x|$ on $\mathbf R$. Define a Markov process that starts with a point $x_0 \in \mathbf R$ and continues with $x_{k+1}=f_{\theta_{k+1}}(x_{k})$ with each $\theta _{k+1}$ chosen from a fixed bounded distribution $\mu$ on ${\mathbf R}^+$. We prove the conjecture of Letac that if $\mu$ is not supported on a lattice, then this process has a unique stationary distribution $\pi_{\mu}$ and any distribution converges under iteration to $\pi_{\mu}$ (in the weak-$^*$ topology). We also give a bound on the rate of convergence in the special case that $\mu$ is supported on a two-point set. We hope that the techniques will be useful for the study of other Markov processes where the transition functions have Lipschitz number one.
Keywords: iterated random function, Markov process, stationary distribution.
@article{TVP_2002_47_2_a4,
     author = {A. Abrams and H. Landau and Z. Landau and J. Pommersheim and E. Zaslow},
     title = {An iterated random function with {Lipschitz} number one},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {286--300},
     year = {2002},
     volume = {47},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a4/}
}
TY  - JOUR
AU  - A. Abrams
AU  - H. Landau
AU  - Z. Landau
AU  - J. Pommersheim
AU  - E. Zaslow
TI  - An iterated random function with Lipschitz number one
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2002
SP  - 286
EP  - 300
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a4/
LA  - en
ID  - TVP_2002_47_2_a4
ER  - 
%0 Journal Article
%A A. Abrams
%A H. Landau
%A Z. Landau
%A J. Pommersheim
%A E. Zaslow
%T An iterated random function with Lipschitz number one
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2002
%P 286-300
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a4/
%G en
%F TVP_2002_47_2_a4
A. Abrams; H. Landau; Z. Landau; J. Pommersheim; E. Zaslow. An iterated random function with Lipschitz number one. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 2, pp. 286-300. http://geodesic.mathdoc.fr/item/TVP_2002_47_2_a4/